Abstract
The study of functional morphological traits enables us to know fundamental aspects of the dynamics of plant communities in local and global habitats. Regenerative morphological traits play an important role in defining plant history and ecological behavior. Seed and fruit characteristics determine to a large extent the patterns for dispersal, germination, establishment and seedling recruitment a given species exhibits on its natural habitat. Despite their prominent role, seed and fruit traits have been poorly studied at the community level of woody plant species in neo-tropical dry forests. In the present study we aimed at i) evaluate the functional role of morphological traits of seeds, fruits and embryo in woody plant species; ii) determine which are the morphological patterns present in seeds collected from the community of woody species that occur in neo-tropical dry forests; and iii) compare woody plant species seed mass values comparatively between neo-tropical dry and tropical forests. To do so, mature seeds were collected from 79 plant species that occur in the Tumbesian forest of Southwest Ecuador. The studied species included the 42 and 37 most representative tree and shrubbery species of the Tumbesian forest respectively. A total of 18 morphological traits (seven quantitative and 11 qualitative) were measured and evaluated in the seeds, fruits and embryos of the selected species, and we compared the seeds mass with other forest types. Our results showed a huge heterogeneity among traits values in the studied species. Seed mass, volume and number were the traits that vary the most at the community level, i.e. seed length ranged from 1.3 to 39 mm, and seed width from 0.6 to 25 mm. Only six embryo types were found among the 79 plant species. In 40 % of the cases, fully developed inverted embryos with large and thick cotyledons to store considerable amount of nutrients were recorded. We concluded that highly variable and functionally complementary morphological traits occur among the studied woody plants of the dry Tumbesian forest. The latter favors a plethora of behavioral mechanisms to coexist among woody species of the dry forest in response to the environmental stress that is typical of arid areas.References
Aide, T. M., Clark, M. L., Grau, H. R., López‐Carr, D., Levy, M. A., Redo, D., …Muñiz, M. (2012). Deforestation and reforestation of Latin America and the Caribbean (2001-2010). Biotropica, 45(2), 262-71.
Andrew, N. R., Hart, R. A., Jung, M. P., Hemmings, Z., & Terblanche, J. S. (2013). Can temperate insects take the heat? A case study of the physiological and behavioural responses in a common ant, Iridomyrmex purpureus (Formicidae), with potential climate change. Journal of Insect Physiology, 59, 870-880.
Aguirre, Z. & Kvist, L. P. (2005). Composición florística y estado de conservación de los bosques secos del sur-occidente del Ecuador. Lyonia, 8, 41-67.
Aguirre, Z., Linares-Palomino, R., & Kvist, L. (2006). Especies leñosas y formaciones vegetales en los bosques estacionalmente secos de Ecuador y Perú. Arnaldoa, 13, 324-350.
Ayala-Cordero, G., Terrazas, T., López-Mata, L., &Trejo, C. (2004). Variación en el tamaño y peso de la semilla y su relación con la germinación en una población de Stenocereus beneckei. Interciencia, 29, 692-697.
Baskin, J. M., & Baskin, C. C. (2004). A classification system for seed dormancy. Seed Science Research, 14, 1-16.
Baskin, C. C., & Baskin, J. M. (2005). Underdeveloped embryos in dwarf seeds and implications for assignment to dormancy class. Seed Science Research, 15, 357-360.
Baskin, C. C., & Baskin, J. M. (2014). Seeds: Ecology, biogeography and evolution of Dormancy and Germination (2nd Ed.). Kentucky, USA: Elsevier.
Bihn, J. H., Gebauer, G., & Brandl, R. (2010). Loss of functional diversity of ant assemblages in secondary tropical forests. Ecology, 91, 782-792.
Blackie, R., Baldauf, C., Gautier, D., Gumbo, D., Kassa, H., Parthasarathy, N.,..Sunderland, T. (2014). Tropical dry forests: The state of global knowledge and recommendations for future research (Discussion Paper). Bogor, Indonesia: CIFOR.
Chaturvedi, R. K., Raghubanshi, A. S., & Singh, J. S. (2011). Leaf attributes and tree growth in a tropical dry forest. Journal of Vegetation Science, 22(5), 917-931.
Dalling, J. W. (2002). Ecología de semillas. In M. Guariguata & G. Kattan (Eds.), Ecología y conservación de bosques neotropicales (pp. 346-375). Costa Rica: Ediciones LUR.
Daws, M. I., Garwood, N. C., & Pritchard, H. W. (2006). Prediction of desiccation sensitivity in seeds of woody species: a probabilistic model based on two seed traits and 104 species. Annals of Botany, 97, 667-74.
Dickie, J. B., & Stuppy, W. H. (2003). Seed and Fruit Structure: significance in seed conservation operations. In R. D. Smith, J. B. Dickie, S. H. Linington, H. W. Pritchard, & R. J. Probert (Eds.), Seed conservation: turning science into practice. London: The Royal Botanic Gardens, Kew.
Donohue, K., Rubio de Casas, R., Burghardt, L., Kovach, K., & Willis, C. G. (2010). Germination, postgermination adaptation, and species ecological ranges. Annual Review of Ecology, Evolution, and Systematics, 41, 293-319.
Du, Y., Mi, X., Liu, X., Chen, L., & Ma, K. (2009). Seed dispersal phenology and dispersal syndromes in a subtropical broad-leaved forest of China. Forest Ecology and Management, 258, 1147-1152.
Espinosa, C. I., Cabrera, O., Luzuriaga, A., & Escudero, A. (2011). What Factors Affect Diversity and Species Composition of Endangered Tumbesian Dry Forests in Southern Ecuador? Biotropica, 43, 15-22.
Espinosa, C., De la Cruz, M., Luzuriaga, A., & Escudero, A. (2012). Escudero Bosques tropicales secos de la región Pacífico Ecuatorial: diversidad, estructura, funcionamiento e implicaciones para la conservación. Ecosistemas, 21, 167-179.
Fenner, M., & Thompson, K. (2005). The ecology of seeds. Cambridge, UK: Cambridge University Press.
Finch-Savage, W. E., & Leubner-Metzger, G. (2006). Seed dormancy and the control of germination. New Phytologist, 171, 501-523.
Forbis, T. A., Floyd, S. A., & De Queiroz, A. (2002). The evolution of embryo size in angiosperms and other seed plants: implications for the evolution of seed dormancy. Evolution, 56, 2112-2125.
Foster, S., & Janson, C. H. (1985). The relationship between seed size and establishment conditions in tropical woody plants. Ecology, 66, 773-780.
Gardarin, A., Durr, C., Mannino, M. R., Busset, H., & Colbach, N. (2010). Seed mortality in the soil is related to seed coat thickness. Seed Science Research, 20, 243-256.
Garnier, E., Cortez, J., Billés, G., Navas, M. L., Roumet, C., Debussche, M.,... Toussaint, J. P. (2004). Plant functional markers capture ecosystem properties during secondary succession. Ecology, 85(9), 2630-2637.
Griz, L. M., & Machado, I. C. (2001). Fruiting phenology and seed dispersal syndromes in Caatinga, a tropical dry forest in the northeast of Brazil. Journal of Tropical Ecology, 17, 303-321.
Gritti, E. S., Cassignat, C., Flores, O., Bonnefille, R., Chalié, F., Guiot, J., & Jolly, D. (2010). Simulated effects of a seasonal precipitation change on thevegetation in tropical Africa. Climate of the Past, 6, 169-178.
Jara-Guerrero, A., De la Cruz, M., & Méndez, M. (2011). Seed Dispersal Spectrum of Woody Species in South Ecuadorian Dry Forests: Environmental Correlates and the Effect of Considering Species Abundance. Biotropica, 43, 722-730.
Johnson, C., & Romero, J. (2004). A review of evolution of oviposition guilds in the Bruchidae (Coleoptera). Revista Brasileira de Entomologia, 48(3), 401-408.
Kitajima, K. (1996). Cotyledon functional morphology, patterns of seed reserve utilization and regeneration niches of tropical tree seedlings. In M. D. Swaine (Ed.), The ecology of tropical forest tree seedlings (pp. 193-210). Paris, France: Parthenon Publishing Group.
Khurana, E., & Singh, J. S. (2001). Ecology of seed and seedling growth for conservation and restoration of tropical dry forest: a review. Environmental Conservation, 28(1), 39-52.
Khurana, E., Sagar, R., & Singh, J. S. (2006). Seed size: a key trait determining species distribution and diversity of dry tropical forest in northern India. Acta Oecologica, 29, 196-204.
Kröber, W., Böhnke, M., Welk, E., Wirth, C., & Bruelheide, H. (2012). Leaf trait-environment relationships in a subtropical broadleaved forest in South-East China. PLoS ONE, 7(4), 1-11.
Laughlin, D. C., Joshi, C., Van, P. M., Bastow, Z. A., & Fulé, P. Z. (2012). A predictive model of community assembly that incorporates intraspecific trait variation. Ecology Letter, 15(11), 1291-1299.
Leishman, M. R., Wright, I. J., Moles, A. T., & Westoby, M. (2000). The Evolutionary Ecology of Seed Size. In M. Fenner, (Ed.), Seeds: the ecology of regeneration in plant communities (pp. 31-57). Wallingford, UK: CABI Publishing.
Linares-Palomino, R., Oliveira-Filho, A. T., & Pennington, R. T. (2011). Neotropical seasonally dry forests: diversity, endemism and biogeography of woody plants. In R. Dirzo, H. Mooney, G. Ceballos & H. Young (Eds.), Seasonally Dry Tropical Forests: Biology and conservation (pp. 3-21). Washington D.C.: Island Press.
Linares-Palomino, R., Kvist, L. P., Aguirre-Mendoza, Z., & Gonzales-Inca, C. (2010). Diversity and endemism of woody plant species in the Equatorial Pacific seasonally dry forests. Biodiversity and Conservation, 19, 169-185.
Narayan, D., & Pandey, N. (2014). Tropical Dry Forest Restoration: Science and Practice of Direct Seeding in a Nutshell (Occaional paper). Rajasthan State Pollution Control Board, 7, 2-19.
Newton, T. Marchese, J. A., Fernandes de Sousa, A. K., Curti, G. L., Fogolari, H., & Vinicius, S. (2013). Uso do software ImageJ na estimativa de área foliar para a cultura do feijão. Interciencia, 38, 843-848.
Martin, A. C. (1946). The comparative internal morphology of seeds. American Midland Naturalist, 36, 513-660.
Metz, J., Liancourt, P., Kigel, J., Harel, D., Sternberg, M., & Tielborger, K. (2010). Plant survival in relation to seed size along environmental gradients: a long-term study from semi-arid and Mediterranean annual plant communities. Journal of Ecology, 98, 697-704.
Peco, B., Traba, J., Levassor, C., Sánchez, A. M., & Azcarate, F. M. (2003). Seed size, shape and persistence in dry Mediterranean grass and scrublands. Seed Science Research, 13(1), 87-95.
Pennington, T., Lewis, G., & Ratter, J. (2006). Neotropical savannas and seasonally dry forests: plant diversity, biogeography and conservation. Florida: CRC Press
Portillo-Quintero, C., & Sánchez-Azofeifa, G. (2010). Extent and conservation of tropical dry forests in the Americas. Biological Conservation, 143(1),144-155.
Quesada, M., & Stoner, K. E. (2004). Threats to the conservation of tropical dry forest in Costa Rica. In G. W. Frankie, A. Mata & V. S. Brandleigh (Eds.), Biodiversity Conservation in Costa Rica: Learning the Lessons in a Seasonal Dry Forest (pp. 266-280). Berkeley: University of California Press.
R Core Team. (2013). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from http://www.R-project.org/
Sánchez-Azofeifa, A., Powers, J., Fernandes, G., & Quezada, M. (Eds.). (2014). Tropical Dry Forests in the Americas. Ecology, Conservation, and Management. New York: CRC Press.
Sánchez, J .A., Muñoz, B., & Montejo, L. (2009). Rasgos de semillas de árboles en un bosque siempreverde tropical de la Sierra del Rosario, Cuba. Pastos y Forrajes, 32, 1-20.
Seidler, T. G., & Plotkin, J. B. (2006). Seed dispersal and spatial pattern in tropical trees. PLoS Biology, 4(11), 2132-2137.
Silva, E. C., Lopes, S. D., & Miranda de Melo, J. I. (2015). Floristic similarity and dispersal syndromes in a rocky outcrop in semi-arid Northeastern Brazil. Revista de Biología Tropical, 63(3), 827-843.
Scholze, M., Knorr, W., Arnell, N. W., & Prentice, I. C. (2006). A climate-change risk analysis for world ecosystems. The National Academy of Sciences of the USA, 103(35), 13116-13120.
Shipley, B., Vile, D., & Garnier, E. (2006). From plant traits to plant communities: A statistical mechanistic approach to biodiversity. Science, 314, 812-814.
The IUCN. (2015). Red List of Threatened Species. Version 2015.2. Retrieved from www.iucnredlist.org.
Vandelook, F., Verdu, M., & Honnay, O., (2012a). The role of seed traits in determining the phylogenetic structure of temperate plant communities. Annals of Botany, 110(3), 629-636.
Vandelook, F., Janssens, S. B., & Probert, R. J., (2012b) Relative embryo length as an adaptation to habitat and life cycle in Apiaceae. New Phytologist, 195(2), 479-487.
Westoby, M., Falster, D. S., Moles, A. T., Vesk, P. A., & Wright, I. J. (2002). Plant ecological strategies: some leading dimensions of variation between species. Annual Review of Ecology, Evolution and Systematics, 33, 125-59.
Yan, D., Duermeyer, L., Leoveanu, C., & Nambara, E. (2014). The Functions of the Endosperm During Seed Germination. Plant & Cell Physiology, 9, 1521-33.
Yates, M. L., Andrew, N. R., Binns, M., & Gibb, H. (2014). Morphological traits: predictable responses to macrohabitats across a 300 km scale. PeerJ, 2, e271.
Yu, S., Sternberg, M., Kutiel, P., & Chen, H. (2007). Seed mass, shape, and persistence in the soil seed bank of Israeli coastal sand dune flora. Evolutionary Ecology Research, 9(2), 325-340.
Comments
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright (c) 2016 Revista de Biología Tropical