Revista de Biología Tropical ISSN Impreso: 0034-7744 ISSN electrónico: 2215-2075

Establishment of Mimosa biuncifera (Fabaceae) inoculated with arbuscular mycorrhizal fungi in greenhouse and field drought conditions
PT 64-2 JUN 2016

Supplementary Files

Mimosa biuncifera, flower and fruit


Mimosa biuncifera
arbuscular mycorrhizal fungi
water-use efficiency
plant establishment
Flourensia resinosa
Mezquital Valley.
Mimosa biuncifera
hongos micorrizógenos arbusculares
uso eficiente del agua
establecimiento vegetal
Flourensia resinosa
Valle del Mezquital.

How to Cite

Peña-Becerril, J. C., Monroy-Ata, A., Orozco-Almanza, M. S., & García-Amador, E. M. (2016). Establishment of Mimosa biuncifera (Fabaceae) inoculated with arbuscular mycorrhizal fungi in greenhouse and field drought conditions. Revista De Biología Tropical, 64(2), 791–803.


Mexico is dominated by arid or semi-arid ecosystems, predominantly characterized as xeric shrublands. These areas are frequently deteriorated due to agriculture or over-grazing by livestock (sheep and goats). The vegetation type mainly consists of thorny plant species, and among these, the dominant one in overgrazed areas is catclaw (Mimosa biuncifera). This is a nurse plant that facilitates establishment of other vegetation and promotes plant succession. Catclaw plants form a mutualistic association with arbuscular mycorrhizal fungi (AMF), which improves uptake of nutrients and water. The objective of this study was to determine the effect of inoculating catclaw plants with native AMF and starting their growth under a low water availability treatment in a greenhouse, and later transplanting them to field conditions of drought and deterioration. Field plants were evaluated according to their survivorship and growth. The seeds of catclaw plants and soil with AMF spores were collected in the Mezquital Valley of Hidalgo State, in Central Mexico. Seedlings were grown in individual pots in a greenhouse. The experimental design consisted of two levels of pot irrigation, wet (W) and dry (D), as well as the presence (M+) or absence (M-) of AMF inoculum, with 20 replicates for each treatment. The following plant parameters were recorded every week: height, number of leaves and pinnae, and mean diameter of coverage. After 20 weeks in the greenhouse, determination was made of fresh and dry biomass, relative growth rate (RGR), root/shoot ratio, real evapotranspiration (RET), water-use efficiency (WUE), and percentage of mycorrhizal colonization. The remaining plants growing under the dry treatment (M+ and M-) were then transplanted to a semi-arid locality in the Mezquital Valley. During one year, monthly records were kept of their height, number of leaves, mean diameter of coverage and survival. Results showed that compared to greenhouse plants under other treatments, those under the wet mycorrhizal (WM+) treatment were taller, had more pinnae, and were characterized by greater coverage, faster RGR, and greater fresh and dry biomass. Moreover, inoculated plants (WM+ and DM+) showed higher WUE than those uninoculated (WM- and DM-, respectively). After one year in field conditions, there was a higher survival rate for previously inoculated versus uninoculated plants. Hence, mycorrhization of M. biuncifera with native AMF inoculum increased plant efficiency in biomass production, thus favoring establishment and survival in field conditions. We concluded that inoculation of catclaw plants is recommendable for revegetation programs in deteriorated semi-arid zones.


Ainuddin, N. A., & Chang, M. (1999). Responses of herbaceous mimosa (Mimosa strigillosa), a new reclamation species, to soil pH. Resources, Conservation and Recycling, 27(4), 287-298.

Allen, E. B. (1999a). La restauración de zonas áridas perturbadas con especial referencia a los hongos micorrízicos. In R. Orellana, J. A. Escamilla, & A. Larqué-Saavedra (Eds.), Ecofisiología vegetal y conservación de recursos genéticos (pp. 167-177). Mérida, Yuc.: Centro de Investigación Científica de Yucatán, A. C.

Allen, M. F. (1999b). La micorriza y las rehabilitaciones de suelos áridos perturbados: procesos y prácticas. In R. Orellana, J. A. Escamilla, & A. Larqué-Saavedra (Eds.), Ecofisiología vegetal y conservación de recursos genéticos (pp. 151-165). Mérida, Yuc.: Centro de Investigación Científica de Yucatán, A. C.

Aronson, J., Floret, C., Le Floc'h, E., Ovalle, C., & Pontanier, R. (1993). Restoration and Rehabilitation of Degraded Ecosystems in Arid and Semi-Arid Lands. I. A View from the South. Restoration Ecology, 1(1), 8-17.

Augé, R. M. (2001). Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza, 11, 3-42.

Augé, R. M. (2004). Arbuscular mycorrhizae and soil/plant water relations. Canadian Journal of Soil Science, 84(4), 373-381.

Augé, R. M., Moore, J. L., Sylvia, D. M., & Cho, K. (2004). Mycorrhizal promotion of host stomatal conductance in relation to irradiance and temperature. Mycorrhiza, 14(2), 85-92.

Bago, B., Pfeffer, P. E., & Shachar-Hill, Y. (2000). Carbon metabolism and transport in arbuscular mycorrhizas. Plant Physiology, 124(3), 949-957.

Bainbridge, D. A. (1990). The restoration of agricultural lands and drylands. In J. J. Berger (Ed.), Environmental restoration: science and strategies for restoration of the earth (pp. 4-13). Washington: Island Press.

Bolandnazar, S., Aliasgarzad, N., Neishabury, M. R., & Chaparzadeh, N. (2007). Mycorrhizal colonization improves onion (Allium cepa L.) yield and water use efficiency under water deficit condition. Scientia Horticulturae, 114(1), 11-15.

Camargo-Ricalde, S. L., & Dhillion, S. S. (2003). Endemic Mimosa species can serve as mycorrhizal “resource islands” within semiarid communities of the Tehuacán-Cuicatlán Valley, Mexico. Mycorrhiza, 13(3), 129-136.

Camargo-Ricalde, S. L., Dhillion, S. S., & Grether, R. (2002). Community structure of endemic Mimosa species and environmental heterogeneity in a semi-arid Mexican valley. Journal of Vegetation Science, 13(5), 697-704.

Caravaca, F., Barea, J. M., Palenzuela, J., Figueroa, D., Alguacil, M. M., & Roldán, A. (2003). Establishment of shrub species in a degraded semiarid site after inoculation with native or allochthonous arbuscular mycorrhizal fungi. Applied Soil Ecology, 22(2), 103-111.

Carrillo-García, A., León de la Luz, J. L., Bashan, Y., & Bethlenfalvay, G. J. (1999). Nurse plants, mycorrhizae, and plant establishment in a disturbed area of the Sonoran desert. Restoration Ecology, 7(4), 321-335.

Cervantes, V., Arriaga, V., Meave, J., & Carabias, J. (1998). Growth analysis of nine multipurpose woody legumes native from southern Mexico. Forest Ecology and Management, 110, 329-341.

Chalk, P. M., Souza, R. de F., Urquiaga, S., Alves, B. J. R., & Boddey, R. M. (2006). The role of arbuscular mycorrhiza in legume symbiotic performance. Soil Biology and Biochemistry, 38(9), 2944-2951.

Chang, M., Crowley, C. M., & Nuruddin, A. A. (1995). Responses of herbaceous mimosa (Mimosa strigillosa), a new reclamation species, to cyclic moisture stress. Resources, Conservation and Recycling, 13(3-4), 155-165.

Chaves, M. M., Pereira, J. S., Maroco, J., Rodrigues, M. L., Ricardo, C. P. P., Osorio, M. L., Carvalho, I., Faria, T., & Pinheiro, C. (2002). How Plants Cope with Water Stress in the Field? Photosynthesis and Growth. Annals of Botany, 89(7), 907-916.

Collier, S. C., Yarnes, C. T., & Herman, R. P. (2003). Mycorrhizal dependency of Chihuahua Desert plants is influenced by life history strategy and root morphology. Journal of Arid Environments, 55(2), 223-229.

Douds Jr., D. D., & Jonson, N. C. (2007). Contributions of Arbuscular Mycorrhizae to Soil Biological Fertility. In L. K. Abbott, & D. V. Murphy (Eds.), Soil Biological Fertility: A Key to Sustainable Land Use in Agriculture (pp. 129-162). Netherlands: Springer.

Escudero, V., & Mendoza, R. (2005). Seasonal variation of arbuscular mycorrhizal fungi in temperate grasslands along a wide hydrologic gradient. Mycorrhiza, 15(4), 291-299.

Fagbola, O., Osonubi, O., Mulongoy, K., & Odunfa, S. A. (2001). Effects of drought stress and arbuscular mycorrhiza on the growth of Gliricidia sepium (Jacq). Walp, and Leucaena leucocephala (Lam.) de Wit. in simulated eroded soil conditions. Mycorrhiza, 11(4), 215-223.

García, I., Mendoza, R., & Pomar, M. C. (2008). Deficit and excess of soil water impact on plant growth of Lotus tenuis by affecting nutrient uptake and arbuscular mycorrhizal symbiosis. Plant and Soil, 304(1), 117-131.

García, M. E. (1981). Modificaciones al sistema de clasificación climática de Köppen (3rd ed.). Mexico, D.F.: Editorial Larios.

García-Sánchez, R., Camargo-Ricalde, S. L., García-Moya, E., Luna-Cavazos, M., Romero-Manzanares, A., & Montaño, N. M. (2012). Prosopis laevigata and Mimosa biuncifera (Leguminosae), jointly influence plant diversity and soil fertility of a Mexican semiarid ecosystem. Revista de Biología Tropical, 60(1), 87-103.

Ghosh, S., & Verma, N. K. (2006). Growth and mycorrhizal dependency of Acacia mangium Willd. inoculated with three vesicular arbuscular mycorrhizal fungi in lateritic soil. New Forest, 31(1), 75-81.

Green, J. J., Baddeleya, J. A., Cortina, J., & Watson, C. A. (2005). Root development in the Mediterranean shrub Pistacia lentiscus as affected by nursery treatments. Journal of Arid Environments, 61(1), 1-12.

Grether, R. (1982). Aspectos ecológicos de Mimosa biuncifera y Mimosa monancistra en el noroeste del estado de Guanajuato. Boletín de la Sociedad Botánica de México, 43, 43-60.

Grether, R., Camargo-Ricalde, S. L., & Martínez-Bernal, A. (1996). Especies del género Mimosa (Leguminosae) presentes en México. Boletín de la Sociedad Botánica de México, 58, 149-152.

Grouzis, M., & Leonard-Elie, A. (1997). Influence of tree cover on herbaceous above- and belowground phytomass in the Sahelian zone of Senegal. Journal of Arid Environments, 35(2), 285-296.

Gutiérrez, J. R., & Sqeo, F. A. (2004). Importancia de los arbustos en los ecosistemas semiáridos de Chile. Ecosistemas, 13(1), 36-45.

Hampp, R., Nehls, U., & Wallenda, T. (2000). Physiology of Mycorrhiza. In K. Esser, J. W. Kadereit, U. Lüttge, & M. Runge (Eds.), Progress in botany 61: Genetics, physiology, systematics, ecology (pp. 223-241). Berlin: Springer.

Harrison, M. J. (2005). Signaling in the Arbuscular Mycorrhizal Symbiosis. Annual Review Microbiology, 59, 19-42.

Herrera-Arreola, G., Herrera, Y., Reyes-Reyes, B. G., & Dendooven, L. (2007). Mesquite (Prosopis juliflora (Sw.) D.C.), huisache (Acacia farnesiana (L.) Willd.) and catclaw (Mimosa biuncifera Benth.) and their effect on dynamics of carbon and nitrogen in soils of the semi-arid highlands of Durango, Mexico. Journal of Arid Environments, 69(4), 583-598.

Hunt, R. (1978). Plant Growth Analysis. Institute of Biology's. London studies in biology no. 96. London: Edward Arnold.

Hunt, R. (1982). Plant growth curves: the functional approach to plant growth analysis. London: Edward Arnold.

Jacobson, K. M. (1997). Moisture and substrate stability determine VA-mycorrhizal fungal community distribution and structure in an arid grassland. Journal of Arid Environments, 35(1), 59-75.

Jones, H. G. (1992). Plants and microclimate: a quantitative approach to environmental plant physiology (2nd ed.). Cambridge: Cambridge University Press.

Koide, R. T. (1991). Nutrient supply, nutrient demand and plant response to mycorrhizal infection. New Phytologist, 117(3), 365-386.

Kramer, P. J. (1989). Relaciones hídricas de suelos y plantas, una síntesis moderna. México: Harla-México.

Landeweert, R., Hoffland, E., Finlay, R. D., Kuyper, T. W., & van Breemen, N. (2001). Linking plants to rocks: ectomycorrhizal fungi movilize nutrients from minerals. Trends Ecology Evolution, 16(5), 248-254.

Lloret, F., Casanovas, C., & Peñuelas, J. (1999). Seedling survival of Mediterranean shrubland species in relation to root: shoot ratio, seed size and water and nitrogen use. Functional Ecology, 13(2), 210-216.

Luna-Suárez, S., Frías-Hernández, J. T., Olalde-Portugal, V., & Dendooven, L. (2000). Catclaw (Mimosa biuncifera): a pest or a means to restore soil fertility in heavily eroded soil from the central highlands of Mexico? Biology and Fertility of Soils, 32, 109-113.

Maestre, F. T., Bautista, S., Cortina, J., Díaz, G., Honrubia, M., & Vallejo, R. (2002). Microsite and mycorrhizal inoculum effects on the establishment of Quercus coccifera in a semi-arid degraded steppe. Ecological Engineering, 19(4), 289-295.

Mathur, N., & Vyas, A. (2000). Influence of arbuscular mycorrhizae on biomass production, nutrient uptake and physiological changes in Ziziphus mauritiana Lam. under water stress. Journal of Arid Environments, 45(3), 191-195.

McGonigles, T. P., Miller, M. H., Evans, D. G., Fairchild, G. L., & Swan, J. A. (1990). A new method wich gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytologist, 115(3), 495-501.

McVaugh, R. (1987). Flora Novo-Galiciana; a descriptive account of the vascular plants of western México, Volume 5, Leguminosae. Michigan: The University of Michigan Press.

Mohammadi, K., Khalesro, S., Sohrabi, Y., & Heidari, G. (2011). A review: Beneficial effects of the mycorrhizal fungi for plant growth. Journal of Applied Environmental and Biological Sciences, 1(9), 310-319.

Monroy, A. A., & García, S. R. (2009). Plantas y hongos. Micorrizas arbusculares: un mutualismo esencial en zonas semiáridas. Mexico: Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México.

Morte, A., Lovisolo, C., & Schubert, A. (2000). Effect of drought stress on growth and water relations of the mycorrhizal association Helianthemum almeriense-Terfezia claveryi. Mycorrhiza, 10(3), 115-119.

Newton, R. J., & Goodin, J. R. (1989). Moisture stress adaptation in shrubs. In C. M. McKell (Ed.), The biology and utilization of shrubs (pp. 365-383). San Diego, C.A.: Academic Press.

Nobel, P. S. (1983). Biophysical Plant Physiology and Ecology. San Francisco, California: W. H. Freeman and Company.

Padilla, F. M., Ortega, R., Sánchez, J., & Pugnaire, F. I. (2009). Rethinking species selection for restoration of arid shrublands. Basic and Applied Ecology, 10(7), 640-647.

Pattinson, G. S., Hammill, K. A., Sutton, B. G., & McGee, P. A. (2004). Growth and survival of seedlings of native plants in an impoverished and highly disturbed soil following inoculation with arbuscular mycorrhizal fungi. Mycorrhiza, 14(3), 339-346.

Pereira, J. S., Chaves, M. M., Caldeira, M. C., & Correia, A. V. (2006). Water availability and productivity. In J. I. L. Morison & M. Morecroft (Eds.), Plant Growth and Climate Change (pp. 118-145). United States: Blackwell Publishing.

Phillips, J. M., & Hayman, D. S. (1970). Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society, 55(1), 158-160.

Querejeta, J. I., Barea, J. M., Allen, M. F., Caravaca, F., & Roldán, A. (2003). Differential response of d13C and water use efficiency to arbuscular mycorrhizal infection in two aridland woody plant species. Oecologia, 135(4), 510-515.

Requena, N., Pérez-Solís, E., Azcón-Aguilar, C., Jeffries, P., & Barea, J. M. (2001). Management of indigenous plant-microbe symbioses aids restoration of desertified ecosystems. Applied and Environmental Microbiology, 67(2), 495-498.

Reyes-Quintana, C. K., Ferrera-Cerrato, R., Alarcón, A., & Rodríguez, Z. S. (2000). Microbiología de la relación de nodricismo entre leguminosas arbóreas y Neobuxbaumia tetetzo en los suelos no erosionados y erosionados en Zapotitlán de las Salinas, Puebla. In A. Alarcón & R. Ferrera-Cerrato (Eds.), Ecología fisiología y biotecnología de la micorriza arbuscular (pp. 56-68). México: IRENAT-Colegio de Postgraduados, Montecillo, Mundi Prensa.

Ruiz-Lozano, J. M., & Aroca, R. (2010). Chapter 11: Host response to osmotic stresses: stomatal behaviour and water use efficiency of arbuscular mycorrhizal plants. In H. Koltai & Y. Kapulnik (Eds.) Arbuscular mycorrhizas: physiology and function (pp. 239-256). Netherlands: Springer.

Rzedowski, J. (1994). Vegetación de México. México: Limusa, Noriega Editores.

Smith, F. A., Grace, E. J., & Smith, S. E. (2009). More than a carbon economy: nutrient trade and ecological sustainability in facultative arbuscular mycorrhizal symbioses. New Phytologist, 182(2), 347-358.

Smith, S. E., & Read, D. J. (1997). Mycorrhizal Symbiosis (2nd ed.), San Diego: Academic Press.

Varma, A. (1999). Functions and Application of arbuscular mycorrhizal fungi in arid and semi-arid soils. In A. Varma & B. Hock (Eds.), Mycorrhiza: structure, function, molecular biology and biotechnology (pp. 521-556). Berlin: Springer.

Villagra, P. E., & Cavagnaro, J. B. (2006). Water stress effects on the seedling growth of Prosopis argentina and Prosopis alpataco. Journal of Arid Environments, 64(3), 390-400.

Wu, F., Bao, W., Li, F., & Wu, N. (2007). Effects of drought stress and N supply on the growth, biomass partitioning and water-use efficiency of Sophora davidii seedlings. Environmental and Experimental Botany, 63(1-3), 248-255.

Zhao, B., Trouvelot, A., Gianinazzi, S., & Gianinazzi-Pearson, V. (1997). Influence of two legume species on hyphal production and activity of two arbuscular mycorrhizal fungi. Mycorrhiza, 7(4), 179-185.


Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2016 Revista de Biología Tropical


Download data is not yet available.