Revista de Biología Tropical ISSN Impreso: 0034-7744 ISSN electrónico: 2215-2075

OAI: https://revistas.ucr.ac.cr/index.php/rbt/oai
Impact of daily variable temperatures in life-history traits of tropical anurans
PDF (Español (España))
HTML (Español (España))

Keywords

Anura
crecimiento
desarrollo
renacuajo
temperatura variable.
Anuran
development
growth
tadpole
variable temperature.

How to Cite

Bernal-Bautista, M. H., Turriago-González, J. L., & Villa-Navarro, F. A. (2017). Impact of daily variable temperatures in life-history traits of tropical anurans. Revista De Biología Tropical, 65(1), 55–63. https://doi.org/10.15517/rbt.v65i1.20491

Abstract

Anuran embryos and tadpoles are daily exposed to wide thermal variations in their ponds, with maximum temperatures at midday. The aim of this research was to study the impact of three daily variable thermal environments (with maximum experimental temperatures between 10:00 and 16:00 hours), on the survival, developmental time and body size of metamorphs of four tropical anuran species from lowland habitats in Colombia. A total of 50 embryos (Gosner stage ten) to metamorphosis (Gosner stage 46) of Rhinella humboldti, Hypsiboas crepitans and Engystomops pustulosus were exposed to each one of the three daily variable temperature treatments: high temperature (mean = 27.5 °C; maximum temperature = 34 ± 1 °C; range = 23-35 °C), medium temperature (25.5 °C; 29 ± 1 °C; 23-30 °C), and low temperature (24 °C; 24 ± 1 °C; 23-25 °C). For the other species, Espadarana prosoblepon, 40 embryos to metamorphosis were exposed to each one of the following thermal treatments: high temperature (mean = 22 °C; maximum temperature = 25 ± 1 °C; range = 18-26 °C), medium temperature (20.5 °C; 22 ± 1 °C; 18-23 °C), and low temperature (19 °C; 19 ± 1 °C; 18-20 °C). For all species, the thermal variable environment with the highest temperature showed the greatest accumulated survival, reduced significantly the developmental time from embryos to metamorphs, and the snout-vent-length of metamorphs. Therefore, under field conditions where ponds are exposed to thermally variable environments, the highest temperatures may promote a decrease in the period of time to metamorphosis, and a positive increase for the anuran survival; nevertheless, extreme temperatures were also found in the microhabitat of the species studied, higher than their upper thermal limits reported, which suggest a vulnerable situation for them and other tropical anurans from similar habitats.

https://doi.org/10.15517/rbt.v65i1.20491
PDF (Español (España))
HTML (Español (España))

References

Alford, R. A. (1999). Ecology: Resource Use, Competition and Predation. In R. W. McDiarmid & R. Altig (Eds.), Tadpoles: The Biology of Anuran Larvae (pp. 240-278). Chicago: The University of Chicago Press.

Álvarez, D., & Nicieza, G. (2002). Effects of temperature and food quality on anuran larval growth and metamorphosis. Functional Ecology, 16, 640-648.

Altwegg, R., & Reyer, H. (2003). Patterns of natural selection on size at metamorphosis in water frogs. Evolution, 57, 872-882.

Arrighi, J. M., Lencer, E. S., Jukar, A., Park, D., Phillips, P. C., & Kaplan, R. H. (2013). Daily temperature fluctuations unpredictably influence developmental rate and morphology at a critical early larval stage in a frog. BMC Ecology, 13(1), 18. doi: http://dx.doi.org/10.1186/1472-6785-13-18

Atkinson, D. (1996). Ectotherm liArrighife-history responses to developmental temperature. In I. A. Johnston & A. F. Bennett (Eds.), Animals and Temperature. Phenotypic and Evolutionary Adaptation (pp. 183-204). Cambridge: Cambridge University Press.

Bernal, M. H. & Lynch, J. D. (2013). Thermal tolerance in anuran embryos with different reproductive modes: Relationship to altitude. The Scientific World Journal, doi: http://dx.doi.org/10.1155/2013/183212

Berven, K. A., & Gill, D. E. (1983). Interpreting geographic variation in life-history traits. American Zoologist, 23, 85-97.

Boettger, O. (1892). Katalog der Batrachier-Sammlung im Museum der Senckenbergischen Naturforschenden Gesellshaft in Frankfurt am Main. Frankfurt, Deutschland: Gebrüder Knauer.

Bozinovic, F., Bastias, D. A., Boher, F., Clavijo-Baquet, S., Estay, S. A., & Angilletta, M. J. (2011). The mean and variance of environmental temperature interact to determine physiological tolerance and fitness. Physiological and Biochemical Zoology, 84, 543-552.

Bradford, D. F. (1990). Incubation time and rate of embryonic development in amphibians: the influence of ovum size, temperature, and reproductive mode. Physiological Zoology, 63, 1157-1180.

Cope, E. D. (1864). Contributions to the herpetology of tropical America. Proceedings of the Academy of Natural Sciences of Philadelphia, 16, 166-181.

Deutsch, C. A., Tewksbury, J. J., Huey, R. B., Sheldon, K. S., Ghalambor, C. K., Haak, D. C., & Martin, P. R. (2008). Impacts of climate warming on terrestrial ectotherms across latitude. Proceedings of the National Academy of Sciences, 105, 6668-6672.

Easterling, D. R., Meehl, G. A., Parmesan. C., Changnon, S. A., Karl, T. R., & Mearns, L. O. (2000). Climate extremes: observations, modelling, and impacts. Science, 289, 2068-2074.

Gallardo, J. M. (1965). The species Bufo granulosus Spix (Salientia: Bufonidae) and its geographic variation. Bulletin of the Museum of Comparative Zoology, 134, 107-138.

Gomez-Mestre, I., Saccoccio, V. L., Iijima, T., Collins, E. M., Rosenthal, G. G., & Warkentin, K. M. (2010). The shape of things to come: linking developmental plasticity to post-metamorphic morphology in anurans. Journal of Evolutionary Biology, 23, 1364-1373.

Gosner, K. L. (1960). A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica, 16, 183-190.

Kaplan, R. H., & Phillips, P. C. (2006). Ecological and developmental context of natural selection: maternal effects and thermally induced plasticity in the frog Bombina orientalis. Evolution, 60, 142-156.

Kern, P., Cramp, R. L., & Franklin, C. E. (2015). Physiological responses of ectotherms to daily temperature variation. Journal of Experimental Biology, 218, 3068-3076.

Laugen, A. T., Laurila, A., & Merila, J. (2003). Latitudinal and temperature-dependent variation in embryonic development and growth in Rana temporaria. Oecologia, 135, 548-554.

Meřaková, E., & Gvoždík, L. (2009). Thermal acclimation of swimming performance in newt larvae: the influence of diel temperature fluctuations during embryogenesis. Functional Ecology, 23, 989-995.

Moore, J. A. (1939). Temperature tolerance and rates of development in the eggs of amphibia. Ecology, 20, 459-478.

Morrison, C., & Hero, J. M. (2003). Geographic variation in life-history characteristics of amphibians: a review. Journal of Animal Ecology, 72, 270-279.

Journal of Animal Ecology

(2003)

, 270–279

Journal of Animal Ecology

(2003)

, 270–279

Niehaus, A. C., Wilson, R. S., & Franklin, C. E. (2006). Short and long-term consequences of thermal variation in the larval environment of anurans. Journal of Animal Ecology, 75, 686-692.

Paaijmans, K. P., Heinig, R. I., Seliga, R. A., Blanford, J. I., Blanford, S., Murdock, C. C., & Thomas, M. B. (2013). Temperature variation makes ectotherms more sensitive to climate change. Global Change Biology, 19, 2373-2380.

Pizano, C., Cabrera, M., & García, H. (2014). Bosque seco tropical en Colombia: Generalidades y Contexto. In C. Pizano & H. García (Eds.), El Bosque Seco Tropical en Colombia (pp. 36-47) Colombia: Ediprint Ltda.

Portillo-Quintero, C. A., & Sánchez-Azofeifa, G. A. (2010). Extend and Conservation of tropical dry forest in the Americas. Biological Conservation, 143, 144-155.

Ruel, J. J., & Ayres, M. P. (1999). Jensen’s inequality predicts effects of environmental variation. Perspectives, 14, 361-366.

Sibly, R. M., & Atkinson, D. (1994). How rearing temperature affects optimal adult size in ectotherms. Functional Ecology, 8, 486-493.

Smith-Gill, S. J., & Berven, K. A. (1979). Predicting amphibian metamorphosis. American Naturalist, 113, 563-585.

Tewksbury, J. J., Huey, R. B., & Deutsch, C. A. (2008). Putting the heat on tropical animals. Science, 320, 1296-1297.

Turriago, J. L., Parra, C. A., & Bernal, M. H. (2015). Upper thermal tolerance in anuran embryos and tadpoles at constant and variable peak temperatures. Canadian Journal of Zoology, 93, 267-272.

Ultsch, G. R., Bradford, D. F., & Freda, F. (1999). Physiology: Coping with the Environment. In R. W. McDiarmid & R. Altig (Eds.), Tadpoles: The Biology of Anuran Larvae (pp. 189-214). Chicago: The University of Chicago Press.

Wied-Neuwied, M .A. P. & Prinz, Z. (1824). Abbildungen zur Naturgeschichte Brasiliens. Heft 7. Weimar, Deutschland: au Bureau d’Industrie.

Zuo, W., Moses, M. E., West, G. B., Hou, C., & Brown, J. H. (2011). A general model for effects of temperature on ectotherm ontogenetic growth and development. Proceedings of the Royal Society of London B: Biological Sciences, 279(1734), 1840-1846.

Comments

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2017 Revista de Biología Tropical

Downloads

Download data is not yet available.