Revista de Biología Tropical ISSN Impreso: 0034-7744 ISSN electrónico: 2215-2075

Anatomical changes in roots and hypocotyls of Prosopis ruscifolia (Fabaceae) seedlings exposed to saline stress
PT 64-3 set 2016
PDF (Español (España))
HTML (Español (España))


tolerancia a salinidad
región chaqueña semiárida.
salinity tolerance
Prosopis ruscifolia
semiarid Chaco region.

How to Cite

Bravo, S. J., Pece, M., del Corro, F., Ojeda Brozovich, F., & Lepiscopo, M. (2016). Anatomical changes in roots and hypocotyls of Prosopis ruscifolia (Fabaceae) seedlings exposed to saline stress. Revista De Biología Tropical, 64(3).


Prosopis ruscifolia is a pioneer tree species in flooding or saline areas. The aim of this work was to assess anatomical changes in roots and hypocotyls of P. ruscifolia seedlings induced to saline stress under controlled conditions. Seeds, collected in natural forests of Western Chaco region in Argentina, were sown on paper towels moisturized with saline solutions of 100, 200 and 300 mM of NaCl, and a control group with distilled water. Four repetitions of 50 seeds per treatment were sown, located in hermetic polystyrene boxes, and included in a seeding chamber, at 27 ºC and 12 hours photoperiod. Were studied 35 seedlings from each saline concentration; these seedlings were processed 12 days after sown to obtain microscopic samples. The anatomical variables measured in roots and hypocotyls were the following: main root diameter (µm), bark thickness (µm), number of cell strata in bark, central cylinder diameter (µm), pith diameter (µm), number of cell strata in the pericycle and the tangential diameter of vessels (µm). ANOVA analysis were performed with hypocotyl and root diameters as the dependent variable, and bark thickness (µm), number of cell strata in the bark, the central cylinder diameter (µm), the pith diameter (µm), number of cell strata in the pericycle, the tangential diameter of vessels and the saline concentration as independent variables. Results showed that the root diameter decreased with increasing saline concentrations (P < 0.0001). The bark thickness decreased at 100 mM (P < 0.0001) and the number of cell strata of bark increased to 300 mM (P < 0.0002). The central cylinder diameter decreased at 100 mM saline concentration (P < 0.0001) and the number of cell strata of the pericycle and the pith diameter reduced progressively until 300 mM. The tangential diameter of vessels decreased at 300 mM. These anatomical changes suggested alterations in the expansion and cell division caused by the salinity, and could limit lateral roots formation and reserves storage. Hypocotyls did not show significant anatomical changes in response to increasing salinity, with exception of stomata position and an increase of the hypodermis thickness. These changes indicated that the water stress imposed by low osmotic potential is caused by increasing saline concentration. The seedlings of P. ruscifolia experienced anatomical changes in response to tested saline concentrations in traits related to reserve storage, the absorption and conduction of water, and lateral roots formation.
PDF (Español (España))
HTML (Español (España))


Adámoli, J., Astrada, E., Blasco, C., Florio, A., Tomasini, D., Martínez Ortiz, U., & Calonge, P. (2001). Evaluación económica de un modelo de uso silvopastoril de vinalares y su adecuación como instrumento de gestión política. 1° Congreso Rioplatense de Economía Agraria-XXXI Reunión Anual de Economía Agraria. Montevideo, Uruguay.

Argañaráz, J., Abdala, R., & Meloni, D. (2007). Efectos del almacenamiento sobre la germinación de semillas de vinal Prosopis ruscifolia Griseb. XIII Jornadas Forestales de Entre Ríos, Argentina.

Atabayeva, S., Nurmahanova, A., Minocha, S., Ahmetova1, A., Kenzhebayeva, S., Aidosova1, S., Nurzhanova, A., Zhardamalieva1, A., Asrandina1, S., Alybayeva1, R., & Li, T. (2013). The effect of salinity on growth and anatomical attributes of barley seedling. African Journal of Biotechnology, 12, 2366-2377.

Boletta, P., Ravelo, A., Planchuelo, A., & Grilli, M. (2006). Assessing deforestation in the Argentine Chaco. Forest Ecology and Management, 228, 108-114.

Boughalleb, F., Hajlaoui, H., & Denden, M. (2012). Effect of salt stress on growth, water relations, solute composition and photosynthetic capacity of hero-halophyte Nitraria retusa (L.). Environmental Resource Journal, 6(1), 1-13.

Bravo, S., Abdala, R., Abraham, F., & Pece, M. (2011). Treatments to improve the germination of Prosopis kuntzei Harms, Mimosaceae. Seed Technology Journal, 31(1), 55-62.

Carcamo, H., Bustos, M., Fernández, F., & Bastias, E. (2012). Mitigating effect of salicylic acid in the anatomy of the leaf of Zea mays L. lluteno ecotype from the Lluta Valley (Arica-Chile) under NaCl stress. IDESIA, 30(3), 55-63.

Carillo, P., Annunziata, M. G., Pontecorvo, G., Fuggi, A., & Woodrow, P. (2011). Salinity Stress and Salt Tolerance, Mechanisms and Adaptations. En A. Shanker, & B. Venkateswarlu, (Eds.), Abiotic Stress in Plants. Agricultural and Biological Sciences (pp, 21-38). Italy.

Casenave, E., Degano, C., Toselli, M., & Catán, A. (1999). Statistical studies on anatomical modifications in the radicle and hypocotyl of cotton induced by NaCl. Biological Research, 32(4), 1-10.

Chinnusamy, V., Jagendorf, A., & Zhu, J. (2005). Understanding and improving salt tolerance in plants. Crop Science, 45, 437-448.

D’Ambrogio de Argueso, A. (1986). Manual de Técnicas en Histología Vegetal. Buenos Aires, Argentina: Editorial Hemisferio Sur, S.A.

Degano, C. (1999). Respuestas morfológicas y anatómicas de Tessaria absinthioides (Hook. et Arn.) DC. a la salinidad. Revista Brasileña de Botánica, 22(3), 357-363.

Degenhardt B, & Gimmler, H. (2000). Cell wall adaptations to multiple environment stresses in maize root. Journal of Experimental Botany, 51, 595-603.

Galizzi, F., Angueira, C., & Prieto, D. (1999). Suelos de la planta piloto de drenaje del INTA, Santiago del Estero. Quebracho, 7, 52-60.

Giménez, A., Ríos, N., Hernández, P., & Moglia, J. (2009). Influencia de la edad en el crecimiento de vinal (Prosopis ruscifolia Burkart.), en la Provincia de Santiago del Estero, Argentina. Madera y Bosques, 15(2), 45-57.

ISTA. (1996). International rules for seed testing. International Seed Testing Association. Zurich.

Johansen, D. H. (1940). Plant microtechnique. New York: McGraw-Hill.

Loza-Cornejo, S. & Terrazas, T. (2011). Morfo-anatomía de plántulas en especies de Pachycereeae: ¿hasta cuándo son plántulas? Boletín de la Sociedad Botánica Mexicana, 88, 1-13.

Mauseth, J. D. (2006). Structure-function relationships in highly modified shoots of Cactaceae. Annals of Botany, 98, 901-926.

Meloni, D. (2014). Respuestas fisiológicas de plántulas de Prosopis alba sometidas a estrés salino (Tesis Doctoral). Universidad Nacional de Santiago del Estero, Argentina.

Meloni, D., Gulotta, M., & Oliva-Cano, M. (2008). El estrés salino incrementa la actividad de enzimas antioxidantes y la concentración de polifenoles en vinal (Prosopis ruscifolia G.). Quebracho, 15, 27-31.

Meloni, D., & Martínez, C. (2009). Glycinebetaine improves salt tolerante in vinal (Prosopis ruscifolia Griesbach) seedlings. Brazilian Journal of Plant Physiology, 21(3), 233-241.

Munns, R. (2002). Comparative physiology of salt and water stress. Plant, Cell & Environment, 25(2), 239-250.

Reinoso, H., Sosa, L, Ramírez, L., & Luna, V. (2004). Salt-induced changes in the vegetative anatomy of Prosopis strombulifera (Leguminoseae). Canadian Journal of Botany, 82, 618-628.

Taleisnick, E. & López Launstein, D. (2011). Especies leñosas en ambientes salinos. Ecología Austral, 21, 3-14.

Zhu, J. (2007). Plant Salt Stress. John Wiley & Sons, Ltd



Download data is not yet available.