Abstract
Sulfate-reducing bacteria (SRB) and methanogenic archaea (MA) share common niches in coastal sediments during the terminal phases of the anaerobic mineralization of organic matter. The purpose of this study was to analyze the spatial - temporal variation of SRB and MA in the sediments of a tropical coastal lagoon with ephemeral inlet (La Mancha, Veracruz, Gulf of Mexico) and its relationship with environmental changes. A total of 24 sediment samples were collected during the dry (April, May), rainy (July, September) and Northern (November, February) seasons in the period 2013-2014. Microbiological analyses included the quantification of the viable SRB and MA with different substrates, as well as mineralization experiments to determine the effect of sulfate on acetate oxidation. The analyzed environmental variables in the sediments included: temperature, pH, Eh, salinity, sulfates, H2S, volatile solids, carbohydrates, and granulometric characteristics. Major changes occurred between the dry and rainy seasons. During the dry season, sulfate-reducing abundance was significantly greater with lactate (8.3x105 - 1.2x107 cells / g) and propionate (1.8x105 - 6.6x106 cells / g) as substrates, while the MA that use methanol were dominant (4.2x105 - 9.1x106 cells / g). In contrast, during the rainy season, hydrogenophylic (2.6x105 - 8.3x106 cells/g) and acetoclastic (5.4x105-6.4x106 cells / g) MA increased significantly and SRB decreased in the analyzed substrates. An apparent competition for acetate was observed, with a greater oxidation in the media with sulfates in the dry season (0.06 mM acetate / g sediment / day), and a greater oxidation in the media without sulfates in the rainy season (0.02 mM acetate / g sediment / day). SRB and MA were present throughout the sediment column, however SRB dominated in the first centimeters of the sediment while MA were abundant in deeper layers. In conclusion, SRB and MA together played a role in the mineralization of organic matter in the sediments of La Mancha lagoon, with sulfate-reduction dominating in the dry season (closed inlet) and methanogenesis during the rainy season (open inlet). Changes in rainfall and river input in this lagoon significantly affect salinity and sulfate content, the main factors that regulate the dynamics of SRB and MA in the sediments.References
Balch, W. E., Fox, G. E., Magrum, L. J., Woese, C. R., & Wolfe, R. S. (1979). Methanogens: reevaluation of a unique biological group. Microbiological Reviews, 43, 260-296.
Banat, I. M., & Nedwell, D. B. (1983). Mechanisms of turnover of C2-C4 fatty acids in high-sulphate and low-sulphate anaerobic sediments. FEMS Microbiology Letters, 17, 107-110.
Boschker, H. T. S., de Graaf, W., Köster, M., Meyer-Reil, L. A., & Cappenberg, T. E. (2001). Bacterial populations and processes involved in acetate and propionate consumption in anoxic brackish sediment. FEMS Microbiology Ecology, 35, 97-103.
Böttcher, M. E., Hespenheide, B., Llobet-Brossa, E., Beardsley, C., Larsen, O., Schramm, A., ... Amann, R. (2000). The biogeochemistry, stable isotope geochemistry, and microbial community structure of a temperate intertidal mudflat: an integrated study. Continental Shelf Research, 20, 1749-1769.
Castro, H., Reddy, K. R., & Ogram, A. (2002). Composition and function of sulfate-reducing prokaryotes in eutrophic and pristine areas of the Florida Everglades. Applied and Environmental Microbiology, 68, 6129-6137.
Conrad, R. (1999). Contribution of hydrogen to methane production and control of hydrogen concentrations in methanogenic soils and sediments. FEMS Microbioloy Ecology, 28, 193-202.
Contreras, E. F. (1993). Ecosistemas Costeros Mexicanos. Ciudad de México: CONABIO-UAMI.
Egli, T. (1995). The ecological and physiological significance of the growth of heterotrophic microorganisms with mixtures of substrates. In J. Gwynfryn (Ed.), Advances in Microbial Ecology (14, pp. 305-386). New York: Plenum Press.
Fitzsimons, M. F., Dawit, M., Revitt, D. M., & Rocha, C. (2005). Effects of early tidal inundation on the cycling of methylamines in intertidal sediments. Marine Ecology Progress Series, 294, 51-61.
Folk, R. L. (1969). Petrología de Rocas Sedimentarias. México: UNAM.
Franklin, M. J., William, J. W., & Whitman W. B. (1988). Populations of methanogenic bacteria in a Georgia salt marsh. Applied and Environmental Microbiology, 54, 1151-1157.
Fukui, M., Suh, J., Yonezawa, Y., & Urushigawa, Y. (1997). Major substrates for microbial sulfate reduction in the sediments of Ise Bay, Japan. Ecological Research, 12, 201-209.
Holmer, M., & Kristensen, E. (1994). Coexistence of sulfate reduction and methane production in an organic-rich sediment. Marine Ecology Progress Series, 107, 177-184.
Jørgensen, B. B. (1982). Mineralization of organic matter in the sea-bed, the role of sulphate reduction. Nature, 296, 643-645.
Jørgensen, B. B., & Bak, F. (1991). Pathways and microbiology of thiosulfate transformations and sulfate reduction in a marine sediment (Kattegat, Denmark). Applied and Environmental Microbiology, 57, 847-856.
King, G. M. (1994). Associations of methanotrophs with the roots and rhizomes of aquatic vegetation. Applied and Environmental Microbiology, 60, 3220-3227.
Knoppers, B., & Kjerfve, B. (1997). Coastal lagoons of southeastern Brazil: physical and biogeochemical characteristics. In G. M. E., Perillo, M. C. Piccolo, & M. Pino-Quivira (Eds.), Estuaries of South America (pp. 35-66). Berlin, Germany: Springer.
Lara-Domínguez, A. L., Day, J. W., Yañez-Arancibia, A., & Sainz-Hernández, E. (2006). A dynamic characterization of water flux through a tropical ephemeral inlet, La Mancha lagoon, Gulf of Mexico. In V. P. Singh & Y. Jun (Eds.), Coastal Hydrology and Processes. Proceeding of the AIH 25Th Anniversary Meeting and International Conference "Challenges in Coastal Hydrology and Water Quality" (pp. 413-422). Colorado, USA: Water Resources Publications.
Lyimo, T. J., Pol, A., & Op den Camp, H. J. M. (2002). Sulfate reduction and methanogenesis in sediments of Mtoni mangrove forest, Tanzania. AMBIO. A Journal of the Human Environment, 31, 614-616.
Marty, D., Bonin, P., Michotey, V., & Bianchi, M. (2001). Bacterial biogas in coastal systems affected by freshwater inputs. Continental Shelf Research, 21, 2105-2115.
Mohanraju, R., & Natarajan, R. (1992). Methanogenic bacteria in mangrove sediments. Hydrobiologia, 247, 187-193.
Mountfort, D. O., Asher, R. A., Mays, E. L., & Tiedje, J. M. (1980). Carbon and electron flow in mud and sand flat intertidal sediments at Delaware Inlet, Nelson, New Zealand. Applied and Environmental Microbiology, 39, 686-694.
Mudryk, Z. J., Podgórska, B., Ameryk, A. & Bolalek, J. (2000). The occurrence and activity of sulphate-reducing bacteria in the bottom sediments of the Gulf of Gdańsk. Oceanologia, 42, 105-117.
Muyzer, G., & Stams, A. J. M. (2008). The ecology and biotechnology of sulphate-reducing bacteria. Nature Reviews Microbiology, 6, 441-454.
Parkes, R. J., Gibson, G. R., Mueller-Harvey, I., Buckingham, W. J., & Herebert, R. A. (1989). Determination of the substrates for sulphate-reducing bacteria within marine and estuarine sediments with different rates of sulphate reduction. Journal of General Microbiology, 135, 175-187.
Postgate, J. R. (1963). Versatile medium for the enumeration of sulfate-reducing bacteria. Applied Microbiology, 11, 265-267.
Preston, M. R., & Prodduturu, P. (1992). Tidal variations of particulate carbohydrates in the Mersey Estuary. Estuarine and Coastal Shelf Science, 34, 37-48.
Purdy, K. J., Nedwell, D. B., Embley, T. M., & Takii, S. (2001). Use of 16S rRNA-targeted oligonucleotide probes to investigate the distribution of sulphate-reducing bacteria in estuarine sediments. FEMS Microbiology Ecology, 36, 165-168.
Purdy, K. J., Munson, M. A., Nedwell, D. B., & Embley, T. M. (2002). Comparison of the molecular diversity of the methanogenic community at the brackish and marine sediments of a UK estuary. FEMS Microbiology Ecology, 39, 17-21.
Purdy, K. J., Munson, M. A., Creswell-Maynard, T., Nedwell, D. B., & Embley, T. M. (2003). Use of 16S rRNA-targeted oligonucleotide probes to investigate function and phylogeny of sulphate-reducing bacteria and methanogenic archaea in a UK estuary. FEMS Microbiology Ecology, 44, 361-371.
Ramamurthy, T., Mohanraju, R., & Natarajan, R. (1990). Distribution and ecology of methanogenic bacteria in mangrove sediments of Pichavaram, east coast of India. Indian Journal of Marine Science, 19, 269-273.
Ruíz-Guerrero, M., & López-Portillo, J. (2014). Variación espacio-temporal de la comunidad de macroinvertebrados epibiontes en las raíces del mangle rojo Rhizophora mangle (Rhizophoraceae) en la laguna costera de la Mancha, Veracruz, México. Revista de Biología Tropical, 62, 1309-1330.
Schönheit, P., Kristjansson, J. K., & Thauer, R. K. (1982). Kinetic mechanism for the ability of sulfate reducers to out-compete methanogens for acetate. Archives of Microbiology, 132, 285-288.
Segers, R., & Kengen, S. W. M. (1998). Methane production as a function of anaerobic carbon mineralization: a process model. Soil Biology and Biochemistry, 30, 1107-1117.
Takai, K., & Horikoshi, K. (2000). Rapid detection and quantification of members of the archaeal community by quantitative PCR using fluorogenic probes. Applied and Environmental Microbiology, 66, 5066-5072.
Taketani, R. G., Yoshiura, C. A., Dias, A. C. F., Andreote, F. D., & Tsai, S. M. (2010). Diversity and identification of methanogenic archaea and sulphate-reducing bacteria in sediments from a pristine tropical mangrove. Antonie van Leeuwenhoek, 97, 401-411.
Takii, S., & Fukui, M. (1991). Relative importance of methanogenesis, sulfate reduction and denitrification in sediments of the lower Tama river. Bulletin of the Japanese Society of Microbial Ecology, 6, 1-8.
Ter Braak, C. J. F. (1986). Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology, 67, 1167-1179.
Torres-Alvarado, M. R., Fernández, F. J., Ramírez-Vives, F., & Varona-Cordero, F. (2013). Dynamics of the methanogenic archaea in tropical estuarine sediments. Archaea, Special Issue "Archaea in Past and Present Geobiochemical Processes and Elemental Cycles", 1-13.
Visser, A., Beeksman, I., van der Zee, F., Stams, A. J. M., & Lettinga, G. (1993). Anaerobic degradation of volatile fatty acids at different sulphate concentrations. Applied Microbiology and Biotechnology, 40, 549-556.
Widdel, F., & Hansen, T. A. (1992). The dissimilatory sulfate- and sulfur-reducing bacteria. In A. Balows, H. G. Trüper, M. Dworkin, W. Harder & K. H. Schleifer (Eds.), The Prokaryotes I (pp. 583-616). New York: Springer-Verlag.
Wilms, R., Sass, H., Köpke, B., Cypionka, H., & Engelen, B. (2007). Methane and sulfate profiles within the subsurface of a tidal flat are reflected by distribution of sulfate-reducing bacteria and methanogenic archaea. FEMS Microbial Ecology, 59, 611-621.
Zepp-Falz, K., Holliger, C., Grosskopf, R., Liesack, W., Nozhevnikova, A. N., Müller, B., … Hahn, D. (1999). Vertical distribution of methanogen in the anoxic sediment of Rotse (Swizerland). Applied and Environmental Microbiology, 65, 2402-2408
##plugins.facebook.comentarios##
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright (c) 2016 Revista de Biología Tropical