Revista de Biología Tropical ISSN Impreso: 0034-7744 ISSN electrónico: 2215-2075

Rainfall implications on body size evolution of Aspidoscelis gularis (Squamata: Teiidae)
PDF (Español (España))
HTML (Español (España))

Supplementary Files

Untitled (Español (España))


Método comparado filogenético
señal filogenética
contrastes filogenéticamente independientes
historias de vida
historia evolutiva
Phylogenetic Comparative Method
phylogenetical signal
phylogenetical independent contrast
life histories
evolutionary history

How to Cite

Pérez-Almazán, C., Manríquez-Morán, N. L., Balderas-Plata, M., Antonio-Némiga, X., & López-Alcaide, S. (2017). Rainfall implications on body size evolution of Aspidoscelis gularis (Squamata: Teiidae). Revista De Biología Tropical, 65(2), 725–733.


Life history traits are highly variable attributes that maximize organisms’s adaptation. The relationship of weight and body size with environmental changes and habitat heterogeneity has been documented in previous reports; and size and body shapes are both considered life history attributes that are associated with rainfall, that boost available resources in the environment. While in Aspidoscelis genus, clutch size and relative mass are mainly associated with latitude and altitude, in Aspidoscelis gularis, winter rainfall favors two reproductive seasons, which may determine season variable clutch size. With the aim to study this, samplings were undertaken from May-July 2013, and May-September 2015. A total of 65 individuals lizards of the Southeast clade were obtained, and body length and interaxilar distance measurements were taken; furthermore, hepatic tissue samples were taken for DNA extraction, which allowed us to analyze phylogenetic relationships through a Bayesian Inference analysis, and subsequently, to apply Phylogenetic Comparative Methods (like phylogenetic signal, phylogenetically independent contrasts and reconstruction of ancestral character). Our results showed that there is a low phylogenetic signal regarding body size and shape, while the phylogenetically independent contrasts and reconstruction of ancestral characters suggest that small body sizes are associated to locations with highest rainfall. This can be associated to an establishment of an early sexual maturity, which reflects the maximum size of adults. Furthermore, according to an ANOVA and ANCOVA, there were statistically significant differences in body size and shape respectively, which promote a system for sexual competition for males and a system for fertility in females. These results were important to determine the effect of rainfall on some life history traits, pointing out that lizards of the Southeast clade, belonging to the A. gularis complex were able to face different selection pressures, determined by the environment.
PDF (Español (España))
HTML (Español (España))


Aguilar-Moreno, M., Rodríguez-Romero, F. J. Aragón-Martínez, A., Muñoz-Manzano, J. A., Granados-González G., & Hernández-Gallegos, O. (2010). Dimorfismo sexual de Aspidoscelis costata costata (Squamata: Teiidae) en el sur del Estado De México, México. Revista Chilena de Historia Natural, 83(4), 585-592.

Angilleta, M. J., Oufiero, C. E., & Leaché, A. D. (2006). Direct and indirect effects of environmental temperature on the evolution of reproductive strategies: an information-theoretic approach. The American Naturalist, 168(4), 123-135.

Ballinger, R. E. (1977). Reproductive strategies: food availability as a source of proximal variation in a lizard. Ecology, 58(3), 628-635.

Benabib, M. (2009). Los vertebrados y las historias de vida. En J. J. Morrone & P. Magaña (Eds.), Evolución biológica (pp. 167-188). México: Universidad Nacional Autónoma de México.

Blomberg, S. P., Garland JR. T., & Ives. A. R. (2003). Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution, 57(4), 717-745.

Blueweiss, L., Fox, H., Kudzma, V., Nakashima, D., Peters, R., & Sams, S. (1978). Relationships between body size and some life history parameters. Oecologia, 37(2), 257-272.

Brandt, R., & Navas, C. A. (2011). Life-history evolution on Tropidurinae lizards: influence of lineage, body size and climate. Plos One, 6(5), E20040.

Chávez-García, M. (2010). Relaciones filogenéticas del complejo Aspidoscelis gularis (Sauria: Teiidae) en Cuatrociénegas, Coahuila. (Tesis de Maestría sin publicar). Universidad Autónoma del Estado de Hidalgo, México.

Cox, R. M., Skelly, S. L., & John-Alder, H. B. (2003). Comparative test of adaptive hypotheses for sexual size dimorphism in lizards. Evolution, 57(7), 1653-1669.

Espinosa, L. (2007). Guía práctica sobre la técnica de PCR. In. L. E. Eguiarte, V. Souza & X. Aguirre (Eds.) Ecología Molecular (pp. 517-540). México: SEMARNAT/IEUNAM/CONABIO.

Felsenstein, J. (1985). Phylogenies and the comparative method. American Naturalist, 125, 1-15.

Fetzner, J. W. (1999). Extracting high quality Dna from shed reptile skins: a simplified method. Biotechniques, 26(6), 1052-1054.

Grizante, M. B., Brandt, R., & Kohlsdorf, T. (2012). Evolution of body elongation in Gymnophthalmid lizards: relationships with climate. Plos One, 7(11), E49772.

Harvey, P. H., & Pagel, M. D. (1991). The comparative method in evolutionary biology. Oxford: Oxford University Press.

Iraeta, P., Salvador, A., & Díaz, J. A. (2012). Life-history traits of two mediterranean lizard populations: a possible example of countergradient covariation. Oecologia, 172(1), 167-176.

Maddison, W. P., & Maddison, D. R. (2009). Mesquite: a modular system for evolutionary analysis (version 2.72). Disponible en: http://Mesquiteproject.Org. Acceso: 18 de Agosto de 2015.

Martins, E. P. (1996). Phylogenies, spatial autoregression, and the comparative method: a computer simulation test. Evolution, 50, 1750-1765.

Meiri, S., Yom-To, Y., & Geffen, E. (2007). What determines conformity to Bergmann’s rule?. Global Ecology and Biogeography, 16, 788-794.

Mesquita, D. O, Gomes-Faria, R., Rinaldi-Colli, G., Vitt L. J., & Pianka E. R., (2016). Lizard life-history strategies. Austral Ecology 41(1), 1-5 doi:10.1111/aec.12296.

Michael. D. R., Banks, S. C., Piggott, M. P., Cunningham, R. B., Crane, M., Macgregor, C., Mcburney, C., & Lindenmayer D. B (2014). Geographical variation in body size and sexual size dimorphism in an australian lizard, Boulenger’s skink (Morethia Boulengeri). Plos One, 9(10), E109830.

Midford, P. E, Garland JR, T., & Maddison, W. P. (2010). Pdap:Pdtree: a translation of the Pdtree application of Garland et al., Phenotypic diversity analysis programs. Disponible en: http://Mesquiteproject.Org/Pdap_Mesquite/Index.Html. Acceso: 28 de septiembre de 2015.

Norma oficial mexicana NOM-062-ZOO-1999, Especificaciones técnicas para la producción, cuidado y uso de los animales de laboratorio. México, D. F.

Palumbi, S. R. (1996). PCR and molecular systematics. In D. Hillis, C. Moritz & B. Mable (Eds.), Molecular systematics (Second edition). Sinauer Press.

Pérez-Almazán, C., Balderas-Plata, M. A., Manríquez-Morán, N. L., Madrigal-Uribe D., & Antonio-Némiga, X. (2014). Distribución potencial del complejo Aspidoscelis gularis (Squamata: Teiidae) en México. CienciaUAT, 9(1), 15-22.

Pianka, E. R. (1970). Comparative autoecology of the lizard Cnemidophorus tigris in diferent of its geographic range. Ecology, 51, 703-720.

Pianka E. R., & Vitt. L. J. (2003). Lizards: windows to the evolution of diversity. California: University of California Press

Pincheira-Donoso, D., & Meiri, S. (2013). An intercontinental analysis of climate-driven body size clines in reptiles: no support for patterns, no signals of processes. Evolutionary Biology, 40(4), 562-578.

R Core Team. (2011). R: a language and environment for statistical computing. R foundation for statistical computing. Vienna: Austria. ISBN 3–900051-07-0. Disponible en: http://Www.R-Project.Org. Acesso: 19 de Octubre de 2015.

Roitberg, E. G., Eplanova, V., Kotenko, T. I., Amat, F., Carretero. M. A., Kuranova, V. N., Bulakhova, N. A., Zinenko O. I., & Yakovlev, V. A. (2015). Geographic variation of life-history traits in the sand lizard Lacerta agilis: testing Darwin's fecundity-advantage hypothesis. Journal of Evolutionary Biology, 28, 613-629.

Shine, R. (1980). "Costs" of reproduction in reptiles. Oecologia, 46, 92-100.

Shine, R. (1989). Ecological causes for the evolution of sexual dimorphism: a review of the evidence. Quarterly Review of Biology, 64, 419-461.

Stearns, S. (1976). Life history tactics: a review of the ideas. Quarterly Review of Biology, 51(1), 3-47.

Stearns, S. (1992). The evolution of life histories. Oxford: Oxford University Press.

Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Molecular Biology and Evolution, 12, 2725-9.

Turner, F. B., Medica, P. A., & Smith, D. D. (1974). Reproduction and survivorship of the lizard, Uta Stansburiana, and the effects of winter rainfall, density and predation on these processes. U.S. International Biological Program, Desert Biome, Utah State University, Logan, Utah, Reports of 1973. Progress, Volume 3: Process studies, Rm 74-26.

Vitt, L. J., & Breitenbach, G. L. (1993). Life histories and reproductive tactics among lizards in the genus Cnemidophorus (Sauria: Teiidae). In: J. W. Wright & L. J. Vitt (Eds.), Biology of whiptail lizards (Genus Cnemidophorus) (pp. 211-244). Oklahoma: Oklahoma Museum Of Natural History.

Zamora-Abrego, G., Manríquez-Morán, N. L., Ortíz-Yusty, C. E. & Ortega-León, A. M. (2013). Uso de técnicas moleculares como herramienta para conservar la diversidad biológica. In A. López-Herrera (Ed.), Biología molecular aplicada a la producción animal y la conservación de especies silvestres (pp. 313-386). Colombia: Universidad Nacional De Colombia.



Download data is not yet available.