Revista de Biología Tropical ISSN Impreso: 0034-7744 ISSN electrónico: 2215-2075

The application of calculation models for estimating primary productivity in two topical Mexican coastal lagoons

How to Cite

Mee, L. D. (2016). The application of calculation models for estimating primary productivity in two topical Mexican coastal lagoons. Revista De Biología Tropical, 35(2), 183–193. Retrieved from


Data from detailed radiocarbon uptake studies of two turbid and highly productive Mexican tropical coastal lagoons with distinct ecological environments were used to evaluate and adapt calculation models for the integration of total daily 14C productivity (∑p). For such environments, the precision of the conventional methodology does not permit reliable estimates of Ik from the low light regions of p/I curves. Since the widely used "Talling integral" was thus not directly applicable, alternative solutions which only require knowledge of the position and height of the subsurface productivity maximum were evaluated. One of these models was found to predict ∑p to within 10% of planimetric measurements in all cases. Suggestions are given for practical application of this model and for its future development in association with the assimilation number concept.



Fee, E.J. 1969. A Numerical model for the estimation of photosynthetic production, integrated over time and depth, in natural waters. Limnol. Oceanogr. 14: 906-911.

Fernandez-Perez, H., L.D. Mee & E.F. Mandelli. 1979. Técnica para la determinación de la producción orgánica primaria en aguas de alta turbidez: Nota Científica. An. Centro Cienc. del Mar y Limnol. Univ. NaJ. Autón. México 6: 67-70.

Holmes, R.W. 1 970. The Secchi disk in turbid coastal waters. Limnol. Oceanogr. 15: 688-694.

Ikushima, I. 1967. Ecological studies on the productivity of aquatic plant communities. III. Effect of depth on daily photosynthesis in submerged macrophytes. Bot. Mag., Tokyo 80: 57-67.

Jassby, A.D. & T. Platt. 1976. Mathematical formulation of the relationship between photosynthesis and light for phytoplankton. Limnol. Oceanogr. 21: 540-547.

Lederman, T.C. & P. Tett. 1981. Problems in modelling the photosynthesis-light relationship for phytoplankton. Botanica Marina 24: 125-134.

Mee, L.D. 1977. The chemistry and hydrography of some tropical coastal lagoons. Pacific coast of Mexico, PhD . thesis, Univ. of Liverpool, U.K. 169 p.

Mee, L.D. 1978. Coastal lagoons, p. 441-489. In J.P. Riley & R. Chester (eds.). Chemical Oceanography, 7. Academic Press. London.

Mommaerts, J.P. 1982. The calculation of particulate primary production in a stratified body of water using a modification of the Vollenweider formula. "Meteor" Forsch. Ergebnisse 34: 1-8.

Parker, R.A. 1975. Empirical functions relating metabolic processes in aquatic systems to environmental variables. J. Fish. Res. Bd. Canada 31: 1550-1552.

Parsons, T. & M. Takahashi. 1973. Biological Oceanographic Processes. Pergamon Press. Oxford. 186 p.

Platt, T. & D.V. Subba Rao. 1975. Primary production of marine microphytes, p. 249-280. In Photosynthesis and Productivity in Different Environments. International Biological Program, 3. Cambridge Univ. Press. Cambridge.

Platt, T., K.L. Denman & A.D. Jassby. 1977. Modelling the productivity of plankton, p. 807-856. In E.D. Goldberg, I.N. McCave, J.J. O'Brian & J.H. Steele (eds.). The Sea, 6. Wiley-Interscience. New York.

Rodhe, W. 1965. Standard correlations between pelagic photosynthesis and light, p. 365-381. In C.R. Goldman (ed.). Primary Productivity in Aquatic Environments. Univ. California Press. Berkeley.

Smith, E.L. 1936. Photosynthesis in relation to light and carbon dioxide. Proc. Nat. Acad. Science, Wash. 22: 504-511.

Steele, J .H. 1962. Environmental control of photosynthesis in the sea. Limnol. Oceanogr. 7 : 137-150.

Steeman-Nielsen, E. & E.G. Jorgensen. 1968. The adaptation of algae. I. General part. Physiol. Plant. 21: 401-413.

Strickland, J.D.H. 1958. Solar radiation penetrating the ocean. A review of requirements, data and methods of measurement, with particular reference to photosynthetic productivity. J. Fish. Res. Bd. Canada. 15: 453-493.

Strickland, J.D.H. & T.R. Parsons. 1968. A practical handbook of seawater analysis. Fish. Res. Bd. Canada, Bull. 167. 311 p.

Talling, J.F. 1957. The phytoplankton population as a compound photosynthetic system. New Phytol. 56: 133-149.

Vollenweider. R.A. 1965. Calculation models of photosynthesisdepth curves and some implications regarding day rates estimates in primary production measurements, p. 425-457. In C.R. Goldman (ed.). Primary Productivity in Aquatic Environments. Univ. California Press. Berkeley.

Vollenweider, R.A. (ed.). 1974. A manual on methods for measuring primary production in aquatic environments, 2nd. ed. Blackwell. Oxford. 225 p.

Webb, W.L., M. Newton & D. Starr. 1974. Carbon dioxide exchange of Alnus rubra: A mathematical model. Oecologica 17: 281 -291.

Yentsch, C.R. & R.W. Lee. 1966. A study of photosynthetic light reactions and a new interpretation of sun and shade phytoplankton. J. Mar. Res. 24: 319-337.



Download data is not yet available.