Revista de Biología Tropical ISSN Impreso: 0034-7744 ISSN electrónico: 2215-2075

OAI: https://revistas.ucr.ac.cr/index.php/rbt/oai
Enzymatic activity of proteases from Cyprinus carpio (Cypriniformes: Cyprinidae) captured in a polluted lagoon in Mexico
PDF (Español (España))
HTML (Español (España))

Keywords

carpa común
Cyprinus carpio
proteasas
agua contaminada
laguna
common carp
Cyprinus carpio
proteases
contaminated water
lagoon

How to Cite

Hernández-Sámano, A., Guzmán-García, X., García-Barrientos, R., & Guerrero-Legarreta, I. (2017). Enzymatic activity of proteases from Cyprinus carpio (Cypriniformes: Cyprinidae) captured in a polluted lagoon in Mexico. Revista De Biología Tropical, 65(2), 589–597. https://doi.org/10.15517/rbt.v65i2.24486

Abstract

Common carp (Cyprinus carpio) is an aquatic organism of commercial value able to survive in polluted environments; carps contain proteolytic enzymes of physiological importance and potential industrial application. The objective of this work was partially purify and study the proteolytic activity at different pH of carp proteases living in a polluted environment. Three carps were captured in different zones of Zumpango polluted lagoon (Mexico) at 1 m of maximum deep. Protease crude extracts were obtained from dorsal muscle by aqueous extraction and fractionated by 20 %, 50 %, 80 %-saturated (NH4)2SO4. Fractions extracted with 50 % and 80 %-saturated (NH4)2SO4 were selected for their high proteolytic activity and concentrated by ultrafiltration through 100 kDa molecular weight cutoff membranes and analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The crude proteolytic extract had significantly higher activity (19.7 - 20.3 U / mg) at pH 2, 5, and 7 (P < 0.001). Fractions obtained with 20 %, 50 % and 80 % - saturated (NH4)2SO4 showed peak activity at pH 5 (2.8 U / mg) and pH 6 (2.2 U / mg); pH 6 (4.3 U / mg) and pH 3 - 4 (3.6 - 3.7 U / mg); pH 3 (10.8 U / mg) and pH 10 (10.6 U / mg); respectively. Subfractions of < 100 kDa, obtained with 50 % and 80 %-saturated (NH4)2SO4, had peak proteolytic activity at alkaline pH. A < 100 kDa fraction, obtained with 80 %-saturated (NH4)2SO4, had the highest proteolytic activity (37.3 - 43.7 U / mg) at pH 8 - 10, purification factor of 3 and 19.1 % recovery. Thirteen proteins between 9.8 to 104.8 kDa were identified in the crude extract. Peak protein concentration was observed for 31 - 33 and 39 - 41 kDa, suggesting the possibility predominance of serine- and aspartyl- proteases, respectively. We suggest this protease with maximum activity at alkaline pH is related to the adaptation of C. carpio to polluted waters with high pH. Although unsuitable for human consumption, these organisms can be a source of protease production aimed to several uses as in the industry and waste water treatment among others.
https://doi.org/10.15517/rbt.v65i2.24486
PDF (Español (España))
HTML (Español (España))

References

carpa común, Cyprinus carpio, proteasas, agua contaminada, laguna.

REFERENCIAS

Aguilar-Ibarra, A. (2010) Calidad del agua: un enfoque multidisciplinario. México: Editorial UNAM.

Aranishi, F., Hara, K., Osatomi, K., & Ishihara, T. (1997). Cathepsins B, H and L in Peritoneal Macrophages and Hepatopancreas of Carp Cyprinus carpio. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 117(4), 605-611.

Córdova-Murueta, J. H., Navarrete-del-Toro, M. A., & García-Carreño, F. L. (2016). Advances in the study of activity additivity of supplemented proteases to improve digestion of feed protein by Penaeus vannamei. Aquaculture Nutrition, 1-8. doi:10.1111/anu.12408.

Facchin, S., Diniz Alves, P. D., De Faria Siqueira, F., Moura Barroca, T., Netto Victória, J. M., & Kalapothakis, E. (2013). Biodiversity and secretion of enzymes with potential utility in wastewater treatment. Open Journal of Ecology, 3(1), 34-47.

Food and Agriculture Organization of the United Nations (FAO). (2015) Fisheries and Aquaculture Information and Statistics Service. Retrieved from http://www.fao.org/fishery/statistics/global-aquaculture-production/query/en

Fu, X., Xue, C., Miao, B., Li, Z., Gao, X., & Hirata, T. (2006). Distribution and seasonal activity variation of proteases in digestive tract of sea cucumber Stichopus japonicus. Fisheries Science, 72, 1130-1132.

Goldman-Levkovitz, S., Rimon, A., & Rimon, S. (1995). Purification properties and specificity of cathepsin D from Cyprinus carpio. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 112(1), 147-151.

González-Zamorano, M., Navarrete del Toro, M. A., & García-Carreño, F. L. (2013). Exogenous proteinases as feed supplement for shrimp: in vitro evaluation. Aquaculture Nutrition, 19, 731-740.

Gupta, R., Beg, Q. K., & Lorenz, P. (2002). Bacterial alkaline proteases: Molecular approaches and industrial applications. Applied Microbiology and Biotechnology, 59, 15-32. doi:10.1007/s00253-002-0975-y

Haard, N. F., & Simpson, B. K. (2000) Seafood enzymes: utilization and influence on postharvest seafood quality. USA: Marcel Dekker.

Hernández-Sámano, A. C., Guzmán-García, X., García-Barrientos, R., Ascencio-Valle, F., Sierra-Beltrán, A., Vallejo-Córdoba, B., … Guerrero-Legarreta, I. (2015). Extraction and characterization of sea cucumber Isostichopus fuscus proteases, collected at the Gulf of California, Mexico. Revista Mexicana de Ingeniería Química, 14, 35-47.

Instituto Mexicano de Tecnología del Agua (IMTA). (2012) Plan estratégico para la recuperación ambiental de la Laguna de Zumpango. Diagnóstico e identificación de retos, problemas, estrategias, objetivos, acciones y proyectos prioritarios. México: Fundación Gonzalo Río Arronte.

Klomklao, S. (2008). Digestive proteinases from marine organisms and their applications. Songklanakarin Journal of Science and Technology, 30(1), 37-46.

Kumar, S., Garcia-Carreño, F. L., Chakrabarti, R., Toro, M. A. N., & Córdova-Murueta, J. H. (2007). Digestive proteases of three carps Catla catla, Labeo rohita and Hypophthalmichthys molitrix: Partial characterization and protein hydrolysis efficiency. Aquaculture Nutrition, 13(5), 381-388.

Laemmli, U. K. (1970). Cleavage of structure proteins during the assembly of head of bacteriophage T4. Nature, 277, 680-685.

Liu, Z., Wang, Z., & Zhang, J. (2008). An acidic protease from the grass carp intestine (Ctenopharyngodon idellus). Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 149(1), 83-90.

Osatomi, K., Sasai, H., Cao, M., Hara, K., & Ishihara, T. (1997). Purification and characterization of myofibril-bound serine proteinase from carp Cyprinus carpio ordinary muscle. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 116(2), 183-190.

Pescod, M. B. (1992) Wastewater treatment and use in agriculture. Rome, Italy: Food and Agriculture Organization of the United Nations.

Peteri, A. (2004) Cultured aquatic species information programme. Cyprinus carpio. Rome, Italy: FAO Fisheries and Aquaculture Department.

Robinson, H., & Hogden, C. (1940). The biuret reaction in the determination of serum proteins. I. A study of the conditions necessary for the production of a stable color which bears a quantitative relationship to the protein. Journal of Biological Chemistry, 135, 707-725.

Scopes, R. K. (1994) Protein Purification: Principles and Practice. USA: Springer Science & Business Media.

Siddiqui, K. S., & Torsten, T. (2008) Protein adaptation in extremophiles. USA: Nova Science Publishers.

Sriket, C. (2014). Proteases in fish and shellfish: Role on muscle softening and prevention. International Food Research Journal, 21(2), 433-445.

Zhang, C., & Kim, S. (2010). Research and application of marine microbial enzymes: status and prospects. Marine Drugs, 8, 1920-1934.

Comments

Downloads

Download data is not yet available.