Revista de Biología Tropical ISSN Impreso: 0034-7744 ISSN electrónico: 2215-2075

Effect of tropical dry forest succesional stages on microhabitat use by Agalychnis dacnicolor (Anura: Phyllomedusidae) and Smilisca fodiens (Anura: Hylidae)
PDF (Español (España))
HTML (Español (España))


habitat features
secondary forest
características del hábitat
bosques secundarios

How to Cite

Soto-Sandoval, Y., Suazo-Ortuño, I., Urbina-Cardona, N., Marroquín-Páramo, J., & Alvarado-Díaz, J. (2017). Effect of tropical dry forest succesional stages on microhabitat use by Agalychnis dacnicolor (Anura: Phyllomedusidae) and Smilisca fodiens (Anura: Hylidae). Revista De Biología Tropical, 65(2), 777–798.


Habitat disturbance can modify microhabitats and therefore have a significant effect on the abundance and distribution of anurans species, particularly those associated to specific microhabitats. In this study we evaluated changes in the use of microhabitat by two syntopic species of tree frogs, Agalychnis dacnicolor and Smilisca fodiens along a successional gradient of Tropical Dry Forest in the region of the Biosphere Reserve of Chamela-Cuixmala at the coast of Jalisco, Mexico. We hypothesized that because these two species are habitat generalists, microhabitat use would change in response to secondary forest succession and to the climatic season of the year. Although both species were registered in both secondary and mature forests, A. dacnicolor was associated to mature forest, whereas S. fodiens was more associated to disturbed sites. Neither species showed differences in biomass among successional stages (ES) or between climatic seasons. Unlike S. fodiens, A. dacnicolor presented larger sizes during the rainy season. Body temperature of both species varied between ES and climatic season. S. fodiens presented a more constant temperature among individuals in pastures, while A. dacnicolor in mature forests. Environmental and structural habitat variables that influenced the presence of both species in ES were substrate temperature, height of tree or shrub where the frog was perching and percentage cover of litter, grasses, shrubs, trees and bare soil. The variables that best explained biomass, snout-vent length (LHC) and body temperature of S. fodiens were cover of dry branches and substrate temperature, whereas biomass of A. dacnicolor was better explained by cover of herbs, LHC, height of the tree or shrub where the frog was perching, body temperature and the substrate temperature. Both species used differentially environmental and structural variables of microhabitats along the gradient of initial to late ES. The variables that separated the species were the height of the shelter or perch and the percentage of trees in different ES. Whereas A. dacnicolor was more associated to the lowest strata of vegetation, S. fodiens showed plasticity in microhabitat use, especially in height of shelter or perch. Our results suggested that even when both species are considered habitat generalists, in anthropic landscapes, A. dacnicolor is specialist in microhabitat use, whereas S. fodiens is a species with greater ecological plasticity in microhabitat use. These differences in microhabitat use in response to habitat disturbance may help explain the success of these species in these new landscapes, as well as the importance of secondary forests in different stages of succession to maintain adequate microhabitats for the permanence of species in anthropogenic landscapes.
PDF (Español (España))
HTML (Español (España))


Blaustein, R. A., Han, A. B., Relyea, R. A., Johnson, T. J. P. , Buck, C. J., Gervasi, S. S., & Kats, B. L. (2011). The complexity of amphibian population declines: understanding the role of cofactor in driving amphibian losses. Annals of the New York Academy of Science, 11223(1), 108-119.

Bradford, C., & Garcia-Aguayo, A. (1992). Seasonality, predation, and the behaviour of a tropical mainland anole. Journal of Animal Ecology, 61, 717-733.

Burgos, A., & Mass, J. M. (2004). Vegetation change associated with land-use in tropical dry forest areas of Western Mexico. Agriculture, ecosystems and environment, 104, 475-481.

Bustos-Zagal, M. G., Manjarrez, J., & Franco, C. R. (2013). Uso de microhábitat y termorregulación en Sceloporus horridus horridus (Wiegman 1939) (Sauria: Phrynosomatidae). Acta Zoológica Mexicana, 29(1), 153-163.

Clarke, K. R., & Gorley, R. N. (2015). PRIMER v5, v6 & v7: User manual/tutorial, PRIMER-E, Plymouth UK, 91,192-296.

Cortés-Gómez, M. A., Castro-Herrera, F., & Urbina-Cardona, J. N. (2013). Small changes in vegetation structure create great changes in amphibian ensembles in the Colombian Pacific rainforest. Tropical Conservation Science, 6(6), 749-769.

Crump, M. L., & Scott, Jr. N. J. (1994). Visual Encounter Surveys. In W. R. Heyer, M. A. Donnelly, R. W. McDiarmid, L. A. C. Hayek, & M. S. Foster (Eds.), Measuring and Monitoring Biological Diversity. Standard Methods for Amphibians (pp. 84-92). Washington DC: Smithsonian Institution Press.

Cuevas, M. F., & Martori, R. (2007). Diversidad trófica de dos especies sintópicas del género Leptodactylus (Anura: Leptodactylidae) del Sudeste de la provincia de Córdoba, Argentina. Cuadernos Herpetológicos, 21(1), 7-19.

Del Río-García, J., Serrano-Cardozo, H. V., & Ramírez-Pinilla, M. (2014). Diet and microhabitat use of Bolitoglossa cf. pandi (Caudata: Plethodontidae) from the Cordillera Oriental of Colombia. South American Journal of Herpetology, 9(1), 52-61.

Dirzo, R., Young, S. H., Mooney, A. H., & Ceballos, G. (Eds.) (2011). Seasonally dry tropical forest: Ecology and conservation. Washington, Covelo, London: Island Press.

Duellman, E. W. (2001). Hylid frogs of Middle America (Expended edition Volume 1). Ithaca, New York: Society for the study of amphibians and reptiles, contributions to herpetology.

Duellman, E. W., & Trueb, L. (1994). Biology of Amphibians. Baltimore and London: The Johns Hopkins University Press.

Harper, K. A., MacDonald, S. E., Burton, P. J., Chen, J., Brosofske, K. D., Saunders, S. C., Euskirchen, E. S., Roberts, D., Jaiteh, M. S., & Esseen, P. A. (2005). Edge influence on forest structure and composition in fragmented landscapes. Conservation Biology, 19, 768-782.

Hilje, B., & Aide, M. T. (2012). Recovery of amphibian species richness and composition in a chronosequence of secondary forest, northeastern Costa Rica. Biological Conservation, 146, 170-176.

Hillers, A., Veith, M., & Rödel, M. O. (2008). Effects of forest fragmentation and habitat degradation on West African leaf-litter frogs. Conservation Biology, 22(3), 762-772.

Hunter, M. (1996). Habitat degradation and loss. In M. Hunter (Ed.), Fundamentals of Conservation Biology (pp. 179-190). Cambridge, Massachusetts: Blackwell Science.

Isaacs-Cubides, P. J., & Urbina-Cardona, J. N. (2011). Anthropogenic disturbance and edge effects on anuran assemblages inhabiting cloud forest fragments in Colombia. Naturaleza & Conservacao, 9(1), 39-46.

Janzen, D. H. (1988). Tropical ecological and biocultural restoration. Science, 239, 243-244.

Joly, P., Miaud, C., Lehmann, A., & Grolet, O. (2001). Habitat matrix effects on pond occupancy in newts. Conservation Biology, 15, 239-248.

Lott, E. J., & Atkinson, T. H. (2002). Biodiversidad y fitogeografía de Chamela- Cuixmala, Jalisco. In F. A. Noguera, J. H. Vega, A. N. García, & M. Quesada (Eds.), Historia Natural de Chamela (pp. 83-97). México, D.F.: Universidad Nacional Autónoma de México.

MacFadden, S. W., & Capen, D. E. (2002). Avian habitats relationships at multiple scale in a New England forest. Forest Science, 48, 243-253.

Martínez-Coronel, M., & Pérez-Gutiérrez, M. (2011). Composición de la dieta de Craugastor lineatus (Anura: Craugastoridae) de Chiapas, México. Acta Zoológica Mexicana, 27(2), 215-230.

Menin, M., (2005). Resource use and coexistence of two syntopic hylid frogs (Anura, Hylidae). Revista Brasileira de Zoologia, 22, 61-72.

Meza-Santiago, L. (2014). Estudio de la dieta de Smilisca fodiens en una cronosecuencia de campos abandonados del Bosque Tropical Seco en la Región de Chamela, Jalisco, México (Tesis de Licenciatura). Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México.

Morales, J., & Sarmiento, L. (2002). Dinámica de los macroinvertebrados edáficos y su relación con la vegetación en una sucesión secundaria en el páramo Venezolano. Ecotrópicos, 15(1), 99-110.

Neckel-Oliveira, S., & Gascon, C. (2006). Abundance, body size and movement patterns of a tropical treefrog in continuous and fragmented forests in the Brazilian Amazon. Biological Conservation, 128, 208-315.

Pizano, C., & García, H. (2014). El bosque seco tropical en Colombia. Bogotá, Colombia: Instituto de Investigación de Recursos Biológicos Alexander von Humboldt.

Portillo-Quintero, A. C., & Sánchez-Azofeita, A. G. (2010). Extent and conservation of tropical dry forest in the Americas. Biological Conservation, 143, 144-155.

Promis, A., Caldentey, J., & Ibarra, M. (2010). Microclima en el interior de un bosque de Nothofagus pumilio y el efecto de una corta de regeneración. Bosque (Valdivia), 31(2), 129-139.

Ramírez-Bautista, A. (1994). Manual y claves ilustradas de los anfibios y reptiles de la región de Chamela, Jalisco, México. México, D.F.: Cuadernos del Instituto de Biología, Universidad Nacional Autónoma de México.

Ribeiro de Oliveira, F. F., & Cabral-Eterovick, P. (2010). Patterns of spatial distribution and microhabitat use by syntopic anuran species along permanent lotic ecosystems in the Cerrado of Southeastern Brazil. Herpetologica, 66(2), 159-171.

Rittenhouse, T. A. G., Harper, E. B., Rehard, L. R., & Semlitsch, R. D. (2008). The role of microhabitats in the desiccation and survival of anurans in a recently harvested oak-hickory forest. Copeia, 807-814.

Shoo, L. P., Olson, D. H., McMenamin, S. K., Murray, K. A., Van Sluys, M., Donnelly, M. A., … Hero, J. M. (2011). Engineering a future for amphibians under climate change. Journal of Applied Ecology, 48(2), 487-492.

Soto-Sandoval, Y. (2013). Uso del microhábitat nocturno de dos especies simpátricas (Agalyhcnis dacnicolor y Smilisca fodiens, Anura, Hylidae) en el bosque tropical seco de Chamela, Jalisco, México (Tesis de Licenciatura). Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México.

Suazo-Ortuño, Alvarado-Díaz, J., & Martínez-Ramos, M. (2011). Riparian areas and conservation of herpetofauna in a tropical dry forest in western Mexico. Biotropica, 43(2), 237-245.

Suazo-Ortuño, I., Alvarado-Díaz, J., Mendoza, E., López-Toledo, L., Lara-Uribe, N., Márquez-Camargo, C., … Rangel-Orozco, J. D. (2015). High resilience of herpetofaunal communities in a human-modified tropical dry forest landscape in western Mexico. Tropical Conservation Science, 8(2), 396-423.

Todd, B. D., Rothermel, B. B., Reed, R. N., Luhring, T. M., Schlatter, K., Trenkamp, L., & Gibbons, J. W. (2008). Habitat alteration increases invasive fire ant abundance to the detriment of amphibians and reptiles. Biological Invasion, 10, 539-546.

Toft, C. A. (1985). Resource partitioning in amphibians and reptiles. Copeia, 1985(1), 1-21.

Trejo, I., & Dirzo, R. (2000). Deforestation in seasonally dry tropical forest: A national and local analysis in Mexico. Biological Conservation, 94, 133-142.

Trilleras, J. M. (2008). Análisis socio-ecológico del manejo, degradación y restauración del bosque tropical seco de la región de Chamela-Cuixmala, México (Tesis de Maestría). Universidad Nacional Autónoma de México, México.

Urbina-Cardona, J. N., Navas, C. A., González, I., Gómez-Martínez, M. J., Llano-Mejía, J., Medina-Rangel, G. F., & Blanco, A. (2014). Determinantes de la distribución de los anfibios en el bosque seco tropical de Colombia: herramientas para su conservación. In C. Pizano & H. García (Eds.), el bosque seco tropical en Colombia ii. Biodiversidad asociada al bosque seco (pp. 163-189). Bogotá Colombia: Instituto Alexander von Humboldt.

Urbina-Cardona, J. N., Reynoso, V. H., & Dirzo, R. (2012). Spatio-temporal variation in edge effects on the herpetofauna of a Mexican tropical rain forest. In A. D. Bezerra & T. S. Ferreria (Eds.), Evergreens: Types, Ecology and Conservation (pp. 97-120). New York, USA: Nova Science Publishers, Inc.

Urbina-Cardona, J. N., & Reynoso, V. H. (2011). Descripción y modelado del microhábitat de los anfibios y reptiles que habitan la selva alta perennifolia de los Tuxtlas. In V. H. Reynoso & R. I. Coates (Eds.), Avances y Perspectivas en la Investigación de los Bosques Tropicales y sus Alrededores: La Región de Los Tuxtlas (pp. 355-384). México, D. F.: Instituto de Biología, Universidad Nacional Autónoma de México.

Urbina-Cardona, J. N. (2008). Conservation of Neotropical herpetofauna: Research trends and challenges. Tropical Conservation Sciences, 1(4), 359-375.

Urbina-Cardona, J. N., Olivares-Pérez, M., & Reynoso V. H. (2006). Herpetofauna diversity and microenvironment correlates across the pasture-edge-interior gradient in tropical rainforests fragments in the region of Los Tuxtlas, Veracruz. Biological Conservation, 132, 61-75.

Urbina-Cardona, J. N., & Londoño, M. C. (2003). Distribución de la comunidad de herpetofauna en áreas con diferente grado de perturbación antrópica en la Isla Gorgona, Pacífico Colombiano. Revista de la Academia Colombiana de Ciencias, 27(102), 105-113.

Vitt, L. J. (2000). Ecological consequences of body size in neonatal and small-bodied lizards in the neotropics. Herpetological Monographs, 14, 388-400.

Vitt, L. J., & Caldwell, J. P. (2014). Herpetology: An Introductory Biology of Amphibians and Reptiles. Syndey, Tokyo: Academic Press.

Vitt, L. J., Ávila-Pires, T. C. S., Esposito, M. C., Sartorius, S. S., & Zani, P. A. (2007). Ecology of Alopoglossus angulatus and A. atriventris (Squamata, Gymnophthalmidae) in western Amazonia. Phyllomedusa, 6(1), 11-21.

Webb, J. K., & Shine, R. (1998). Using thermal ecology to predict retreat-site selection by an endangered snake species. Biological Conservation, 86, 233-242.

Wygoda, M. (1988). Adaptive control of water loss resistance in an arboreal frog. Herpetologica, 44, 251-251.

Zúñiga-Vega, J. J., Suárez-Rodríguez, M., Espinoza-Pérez, H., & Johnson, B. J. (2011). Morphological and reproductive variation among populations of the Pacific molly Poecilia butleri. Journal of Fish Biology, 79(4), 1029-1046.



Download data is not yet available.