Revista de Biología Tropical ISSN Impreso: 0034-7744 ISSN electrónico: 2215-2075

Efecto de la temperatura y la acidificación en larvas de Strombus gigas (Mesogastropoda: Strombidae)
PDF (Español (España))
HTML (Español (España))


Strombus gigas
Strombus gigas

How to Cite

Chavez Villegas, J. F., Enríquez Díaz, M. R., & Aldana Aranda, D. (2017). Efecto de la temperatura y la acidificación en larvas de Strombus gigas (Mesogastropoda: Strombidae). Revista De Biología Tropical, 65(2), 505–515.


The increase in CO2 emissions produces heating and reduced pH in the oceans, which may have negative effects on many marine organisms. This is particularly important for those with calcified structures such as the molluscs and their larval stages. We studied Strombus gigas larvae, a gastropod of commercial importance in the Caribbean Sea, in order to know the effect of water temperature and acidification on their development, growth, mortality and calcification during the larval period. A larval culture with triplicate samples was carried out employing four treatments of temperature and pH (Control = 28 °C - pH 8.1, T1 = 28 °C - pH 7.6, T2 = 31 °C - pH 8.1 and T3 = 31 °C - pH 7.6) in August 2015. We registered hatching (No. of eggs – No. of larvae hatched) and organs development, while shell growth and mortality ratio were evaluated over time. Shell calcification was studied in 30 days old larvae using EDX and RAMAN analysis. Our results showed that organs development and shell growth were higher at 31 °C treatments (initial size of 230 ± 4.12 to 313.27 ± 11.34 µm, and final size from 829.50 ± 11.33 to 1 054.50 ± 11.13 µm; from T1 to T2 respectively), and the same pattern was recorded for hatching time (18 hr) and mortality rate (~ 57 %). The Calcium proportion (% wt) was similar between treatments (34.37 ± 10.05 to 37.29 ± 16.81 % wt). Shell Raman analysis showed aragonite in all experimental treatments, with the highest values in the control (1 039.54 ± 780.26 a.u.). Calcite was detected only in 31 °C treatments (174.56 ± 127.19 a.u.), while less intensity of aragonite and calcite were registered at pH 7.6. In conclusion, S. gigas could be adapted to ocean future predictions, however, shell biomineralization processes can be affected.
PDF (Español (España))
HTML (Español (España))


Aldana-Aranda, D., Lucas, A., Brule, T., Salguero, E., & Rendon, F. (1989). Effects of temperature, algal food, feeding rate and density on the larval growth of the milk conch (Strombus costatus) in Mexico. Aquaculture, 76(3), 361-371.

Auzoux-Bordenave, S., Badou, A., Gaume, B., Berland, S., Helléouet, M. N., Milet, C., & Huchette, S. (2010). Ultrastructure, chemistry and mineralogy of the growing shell of the European abalone Haliotis tuberculata. Journal of Structural Biology, 171(3), 277-290.

Brito-Manzano, N., Aldana-Aranda, D., de la Cruz-Lázaro, E., & Estrada-Botello, M. A. (2006). Organogénesis larvaria de Strombus gigas (Mesogastropoda: Strombidae) en el Arrecife Alacranes durante el período máximo de su época reproductiva. Revista Universidad y Ciencia, 22(1), 75-82.

Caldeira, K., & Wickett, M. E. (2003). Oceanography: Anthropogenic carbon and ocean pH. Nature, 425(6956), 365-365.ª

Chollett, I., Mumby, P. J., Müller-Karger, F. E., & Hu, C. (2012). Physical environments of the Caribbean Sea. Limnology and Oceanography, 57(4), 1233-1244.

Enriquez-Diaz, M. R., Volland, J. M., Chavez-Villegas, J. F., Aldana-Aranda, D., & Gros, O. (2015). Development of the planktotrophic veligers and plantigrades of Strombus pugilis (Gastropoda). Journal of Molluscan Studies, eyv011.

Gaylord, B., Hill, T. M., Sanford, E., Lenz, E. A., Jacobs, L. A., Sato, K. N., … Hettinger, A. (2011). Functional impacts of ocean acidification in an ecologically critical foundation species. Journal of Experimental Biology, 214(15), 2586-2594.

Gazeau, F., Gattuso, J. P., Dawber, C., Pronker, A. E., Peene, F., Peene, J., … Middelburg, J. J. (2010). Effect of ocean acidification on the early life stages of the blue mussel Mytilus edulis. Biogeosciences, 7(7), 2051-2060.

Gazeau, F., Gattuso, J. P., Greaves, M., Elderfield, H., Peene, J., Heip, C. H. R., & Middelburg, J. J. (2011). Effect of Carbonate Chemistry Alteration on the Early Embryonic Development of the Pacific Oyster (Crassostrea gigas). PLOS One, 6(8), e23010.

Gazeau, F., Quiblier, C., Jansen, J. M., Gattuso, J. P., Middelburg, J. J., & Heip, C. H. R. (2007). Impact of elevated CO2 on shellfish calcification. Geophysical Research Letters, 34(7), L07603.

Gledhill, D. K., Wanninkhof, R., Millero, F. J., & Eakin, M. (2008). Ocean acidification of the Greater Caribbean Region 1996–2006. Journal of Geophysical Research: Oceans, 113(C10), C10031.

Intergovernmental Panel on Climate Change. (2007). Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press. Retrieved from

Kurihara, H., Kato, S., & Ishimatsu, A. (2007). Effects of increased seawater pCO2 on early development of the oyster Crassostrea gigas. Aquatic Biology, 1(1), 91-98.

Le Moullac, G., Soyez, C., Latchere, O., Vidal-Dupiol, J., Fremery, J., Saulnier, D., … Gueguen, Y. (2016). Pinctada margaritifera responses to temperature and pH: Acclimation capabilities and physiological limits. Estuarine, Coastal and Shelf Science.

Magaña Rueda, V., Graizbord, B., Buenfil Friedman, J., & Gómez Mendoza, L. (2009). Escenarios de cambio climático y tendencias en la zona del Golfo de México. In J. Buenfil (Ed.). Adaptación a los impactos del cambio climático en los humedales costeros del Golfo de México (Vol. 2, pp. 569-673). México D.F.: Secretaría de Medio Ambiente y Recursos Naturales / Instituto Nacional de Ecología (INE-SEMARNAT). Retrieved from

Miller, A. W., Reynolds, A. C., Sobrino, C., & Riedel, G. F. (2009). Shellfish Face Uncertain Future in High CO2 World: Influence of Acidification on Oyster Larvae Calcification and Growth in Estuaries. PLOS One, 4(5), e5661.

Nehrke, G., Poigner, H., Wilhelms-Dick, D., Brey, T., & Abele, D. (2012). Coexistence of three calcium carbonate polymorphs in the shell of the Antarctic clam Laternula elliptica. Geochemistry, Geophysics, Geosystems - Wiley Online Library, 13(5), Q05014.

O’Donnell, M. J., Hammond, L. M., & Hofmann, G. E. (2008). Predicted impact of ocean acidification on a marine invertebrate: elevated CO2 alters response to thermal stress in sea urchin larvae. Marine Biology, 156(3), 439-446.

Orr, J. C., Fabry, V. J., Aumont, O., Bopp, L., Doney, S. C., Feely, R. A., … Yool, A. (2005). Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature, 437(7059), 681-686.

Padilla-Gamiño, J. L., Kelly, M. W., Evans, T. G., & Hofmann, G. E. (2013). Temperature and CO2 additively regulate physiology, morphology and genomic responses of larval sea urchins, Strongylocentrotus purpuratus. Proceedings of the Royal Society of London B: Biological Sciences, 280(1759), 20130155.

Parker, L. M., Ross, P. M., & O’Connor, W. A. (2010). Comparing the effect of elevated pCO2 and temperature on the fertilization and early development of two species of oysters. Marine Biology, 157(11), 2435-2452.

Pörtner, H. O. (2010). Oxygen- and capacity-limitation of thermal tolerance: a matrix for integrating climate-related stressor effects in marine ecosystems. Journal of Experimental Biology, 213(6), 881-893.

Roller, R. A., & Stickle, W. B. (1989). Temperature and salinity effects on the intracapsular development, metabolic rates, and survival to hatching of Thais haemastoma canaliculata (Gray) (Prosobranchia:Muricidae) under laboratory conditions. Journal of Experimental Marine Biology and Ecology, 125(3), 235-251.

Sale, P. F., Van Lavieren, H., Ablan, M. C., Atema, J., Butler, M., Fauvelot, C., ... & Stewart, H. L. (2010). Conservando la Conectividad de los Arrecifes: Guía Para los Administradores de las Áreas Marinas Protegidas. Grupo de Trabajo de Conectividad, Programa de Investigación Dirigido a los Arrecifes de Coral y a la Creación de Capacidades para la Gestión, UNU-INWEH. Retrieved from

Sunday, J. M., Crim, R. N., Harley, C. D. G., & Hart, M. W. (2011). Quantifying rates of evolutionary adaptation in response to ocean acidification. PloS One, 6(8), e22881.

Talmage, S. C., & Gobler, C. J. (2009). The effects of elevated carbon dioxide concentrations on the metamorphosis, size, and survival of larval hard clams (Mercenaria mercenaria), bay scallops (Argopecten irradians), and Eastern oysters (Crassostrea virginica). Limnology and Oceanography, 54(6), 2072-2080.

Talmage, S. C., & Gobler, C. J. (2010). Effects of past, present, and future ocean carbon dioxide concentrations on the growth and survival of larval shellfish. Proceedings of the National Academy of Sciences of the United States of America, 107(40), 17246-17251.

Ushakova, O. O. (2003). Combined effect of salinity and temperature on Spirorbis spirorbis L. and Circeus spirillum L. larvae from the White Sea. Journal of Experimental Marine Biology and Ecology, 296(1), 23-33.

Watson, S. A., Southgate, P. C., Tyler, P. A., & Peck, L. S. (2009). Early Larval Development of the Sydney Rock Oyster Saccostrea glomerata Under Near-Future Predictions of CO2-Driven Ocean Acidification. Journal of Shellfish Research, 28(3), 431-437.

Weiss, I. M., Tuross, N., Addadi, L., & Weiner, S. (2002). Mollusc larval shell formation: amorphous calcium carbonate is a precursor phase for aragonite. Journal of Experimental Zoology, 293(5), 478-491.



Download data is not yet available.