Revista de Biología Tropical ISSN Impreso: 0034-7744 ISSN electrónico: 2215-2075

OAI: https://revistas.ucr.ac.cr/index.php/rbt/oai
Acoustic adaptation in Turdus leucomelas (Passeriformes: Turdidae) songs to different levels of anthropogenic noise, in the metropolitan area of Belem, Para, Brazil
PDF (Español (España))
HTML (Español (España))

Keywords

anthropogenic noise
bioacoustics
bird song
urban gradient
vocal adjustment
ruido antrópico
bioacústica
canto aves
gradiente urbano
ajuste vocálico

How to Cite

Mendes, S., Colino-Rabanal, V. J., & Peris, S. J. (2017). Acoustic adaptation in Turdus leucomelas (Passeriformes: Turdidae) songs to different levels of anthropogenic noise, in the metropolitan area of Belem, Para, Brazil. Revista De Biología Tropical, 65(2), 633–642. https://doi.org/10.15517/rbt.v65i2.25721

Abstract

Anthropogenic noise in urban environments is a major challenge for those species that depend on the transmission of acoustic signals to communicate. To avoid being masked by background noise, some bird species are able to make adjustments in their songs. Studies on vocal adjustment for tropical birds are still scarce and are of interest since both the urban structure and the vegetation associated with urban habitats differ significantly with respect to the cities of temperate climates. In this research we studied the changes in the song parameters of the pale-breasted thrush (Turdus leucomelas) in an urban environment of the metropolitan area of Belém (Brazil). To this end, bird songs were recorded and ambient noise was measured between September and November 2008, in three different acoustic environments (urban, suburban and rural) along an urban gradient. The songs of 12 individuals per area were selected (a total of 36). Possible differences between song parameters were analyzed by ANOVAs. To assess the noise impact on bird song, we only considered the spectrum of environmental noise within the range of vocalizations of the species. In general, birds of urban habitats presented songs with higher maximum frequencies and with a wider range of notes, than their counterparts in suburban and rural areas. The differences were more pronounced in relation to rural areas. No differences in the minimum frequencies, the concentration of energy, or the average duration of the notes were found. These results differ from other studies and could possibly indicate variations in the way birds try to succeed in habitats with high ambient noise. It is necessary further exploration on the role of these changes in the effective improvement of intra-specific communication for the species in such environments.
https://doi.org/10.15517/rbt.v65i2.25721
PDF (Español (España))
HTML (Español (España))

References

Arroyo-Solís, A., Castillo, J. M., Figueroa, E., López-Sánchez, J. L., & Slabbekoorn, H. (2013). Experimental evidence for an impact of anthropogenic noise on dawn chorus timing in urban birds. Journal of Avian Biology, 44, 288-296. DOI: 10.1111/j.1600-048X.2012.05796.x

Baker, M. C., & Logue, D. M. (2003). Population differentiation in a complex bird sound: a comparison of three bioacoustical analysis procedures. Ethology, 109(3), 223-242. DOI: 10.1046/j.1439-0310.2003.00866.x

Beecher, M. D. (1989). Signaling systems for individual recognition: an information theory approach. Animal Behaviour, 38, 248-261. DOI: 10.1016/S0003-3472(89)80087-9

Beecher, M. D., & Brenowitz, E. A. (2005). Functional aspects of song learning in songbirds. Trends in Ecology and Evolution, 20, 143-149. DOI: 10.1016/j.tree.2005.01.004

Brandstätter, R. (2003). Encoding time of day and time of year by the avian circadian system. Journal of Neuroendocrinology, 15(4), 398-404. DOI: 10.1046/j.1365-2826.2003.01003.x

Brumm, H. (2004). The impact of environmental noise on song amplitude in a territorial bird. Journal of Animal Ecology, 73, 434-440. DOI: 10.1111/j.0021-8790.2004.00814.x

Brumm, H. (2006). Animal communication: city birds have changed their tune. Current Biology, 16, 1003-1004. DOI: 10.1016/j.cub.2006.10.043

Brumm, H., & Slabbekoorn, H. (2005). Acoustic communication in noise. Advances in the Study of Behavior, 35, 151-209. DOI: 10.1016/S0065-3454(05)35004-2

Cassone, V. M., & Menaker, M. (1984). Is the avian circadian system a neuroendocrine loop? Journal of Experimental Zoology, 232(3), 539-549. DOI: 10.1002/jez.1402320321

Cavalcante, K. V., Mendes, S., Corbo, M., & Schwabe, W. K. (2008). Avaliação acústica ambiental de um hábitat urbano do pássaro “Troglodytes aedon” exposto ao ruído de tráfego em Campinas-SP. XXII Encontro Sobrac.

Chappuis, C. (1971). Un example de l’influence du milieu sur les emissions vocales des oiseaux: L’evolution des chants en foret equatoriale. Terre Vie, 118, 183-202.

Colino-Rabanal, V. J., Mendes, S., Peris, S. J., & Pescador, M. (2016). Does the song of the wren Troglodytes troglodytes change with different environmental sounds? Acta Ornithologica, 51, 13-22. DOI: 10.3161/00016454AO2016.51.1.002.

Dalbelsteen, T., & Pedersen, S. B. (1992). Song features essential for species discrimination and behaviour assessment by male blackbirds (Turdus merula). Behaviour, 121(3-4), 259-287.

Dawkins, R., & Krebs, J. R. (1978). Animal signals: information or manipulation. En J. R. Krebs & N. B. Davies (Eds.), Behavioral Ecology (pp. 282-309). Oxford: Blackwell Scientific Publ.

Dingle, H. (1972). Aggressive behaviour in stomatopods and the use of information theory in the analysis of animal communication. En H. E. Winn & B. L. Olla (Eds.), Behavior of Marine Animals: Current Perspectives in Research. Invertebrates (Vol. 1, pp. 126-156). New York: Plenum.

Dooling, R. J. (1982). Auditory perception in birds. En D. E. Kroodsma & E. H. Miller (Eds.), Accoustic communication in birds (Vol 1, pp. 95-130). New York: Academic Press.

Fernández-Juricic, E. (2001). Avian spatial segregation at edges and interiors of urban parks in Madrid, Spain. Biodiversity and Conservation, 10, 1303-1316. DOI: 10.1023/A:1016614625675

Fernández-Juricic, E., Poston, R., De Collibus, K., Morgan, T., Bastain, B., Martin, C., Jones, K., & Treminio, R. (2005). Microhabitat selection and singing behavior patterns of male housefinches (Carpodacus mexicanus) in urban parks in a heavily urbanized landscape in the Western U.S. Urban Habitats, 3, 49-69.

Fowler, J. & Cohen, L. (1999). Estadística básica en Ornitología. Madrid: SEO/BirdLife.

Gwinner, E., & Brandstatter, R. (2001). Complex bird clocks. Philosophical Transactions of the Royal Society B: Biological Sciences, 356(1415), 1801-1810. DOI: 10.1098/rstb.2001.0959

Halfwerk, W., Holleman, L. J. M., Lessells, C. M., & Slabbekoorn, H. (2011). Negative impact of traffic noise on avian reproductive success. Journal of Applied Ecology, 48, 210-219. DOI: 10.1111/j.1365-2664.2010.01914.x

Hamao, S., Watanabe, M., & Mori, Y. (2011). Urban noise and male density affect songs in the great tit Parus major. Ethology, Ecology & Evolution, 23, 111-119. DOI: 10.1080/03949370.2011.554881

Hanna, D., Blouin-Demers, G., Wilson, D. R., & Mennill, D. J. (2011). Antropogenic noise affects song structure in redwinged blackbirds (Agelaius phoeniceus). Journal of Experimental Biology, 214, 3549-3556. DOI: 10.1242/jeb.060194

Harms, C. A., Fleming, W. J., & Stoskopf, M. K. (1997). A technique for dorsal subcutaneous implantation of heart rate biometry transmitters in black ducks: application in an aircraft noise response study. Condor, 99, 231-237.

Hu, Y., & Cardoso, G. C. (2010). Which birds adjust the frequency of vocalizations in urban noise? Animal Behaviour, 79, 863-867. DOI: 10.1016/j.anbehav.2009.12.036

Luniak, M., Mulsow, R., & Walasz, K. (1990). Urbanization of the European blackbird - Expansion and adaptations of urban populations. En M. Luniak (Ed.), Urban ecological studies in Central Andeastern Europe (pp. 187-198). Warsaw: Polish Academy of Sciences.

Macedo, D. J., Paula, H., Correa, A., Santos, J., Neves, K., & Pesquero, M. (2007). Guildas alimentares de aves em ambientes de floresta estacional semidecídua e cerradão. En Seminário de iniciação científica (pp. 1-6). Anápolis.

McKinney, M. L. (2006). Urbanization as a major cause of biotic homogenization. Biological Conservation, 127, 247-260. DOI: 10.1016/j.biocon.2005.09.005

Mendes, S., Cavalcante, K. V., Colino-Rabanal, V. J., & Peris, S. J. (2010). Evaluación del impacto de la Contaminación Acústica en el rango de vocalización de Paseriformes basado en el SIL- “Speech Interference Level”. Revista de Acústica, 41(3-4), 33-41.

Mendes, S., Colino-Rabanal, V. J., & Peris, S. J. (2011a). Diferencias en el canto de la ratona común (Troglodytes musculus) en ambientes con distintos niveles de influencia humana. Hornero, 26(2), 85-93.

Mendes, S., Colino-Rabanal, V. J., & Peris, S. J. (2011b). Bird song variations along an urban gradient: the case of the European blackbird (Turdus merula). Landscape and Urban Planning, 99, 51-57. DOI: 10.1016/j.landurbplan.2010.08.013

Morton, E. S. (1975). Ecological sources of selection on avian sounds. American Naturalist, 109, 17-34.

Oberweger, K., & Goller, F. (2001). The metabolic cost of birdsong production. Journal of Experimental Biology, 204, 3379-3388.

Parris, K. M., & Schneider, A. (2009). Impacts of traffic noise and traffic volume on birds in roadside habitats. Ecology and Society, 14, 29. http://www.ecologyandsociety.org/vol14/iss1/art29/

Partecke, J., & Gwinner, E. (2007). Increased sedentariness in European blackbirds following urbanization: a consequence of local adaptation? Ecology, 88, 882-890. DOI: 10.1890/06-1105

Partecke, J., Van’t Hof, T., & Gwinner, E. (2004). Differences in the timing of reproduction between urban and forest European blackbirds (Turdus merula): result of phenotypic flexibility or genetic differences? Proceedings of the Royal Society B: Biological Sciences, 271, 1995-2001. DOI: 10.1098/rspb.2004.2821

Patricelli, G. L., & Blickley, J. L. (2006). Avian communication in urban noise: causes and consequences of vocal adjustment. Auk, 123, 639-650. DOI: 10.1642/0004-8038(2006)123[639:ACIUNC]2.0.CO;2

Peris, S. J., & Pescador, M. (2004). Effects of traffic noise on passerine populations in Mediterranean wooded pastures. Applied Acoustics, 65, 357-366. DOI: 10.1016/j.apacoust.2003.10.005

Potvin, D. A., Mulder, R. A., & Parris, K. M. (2014). Silvereyes decrease acoustic frequency but increase efficacy of alarm calls in urban noise. Animal Behaviour, 98(1), 27-33. DOI: 10.1016/j.anbehav.2014.09.026

Raisbeck, G. (1963). Information Theory. Cambridge, Massachussets: MIT.

Ralph, C., Geupel, J., Geoffrey, R., Pyle, P., Martin, T. E., De Sante, D. F., & Milá, B. (1996). Manual de métodos de campo para monitoreo de aves terrestres. Gen. Tech. Rep. PSW-GTR-159. Albany, CA: Pacific Southwest Research Station, Forest Service, U.S. Department of Agriculture.

Redondo, P., Barrantes, G., & Sandoval, L. (2013). Urban noise influences vocalization structure in the House Wren Troglodytes aedon. Ibis, 155, 621-625. DOI: 10.1111/ibi.12053

Reijnen, R., Foppen, R., & Veenbaas, G. (1997). Disturbance by traffic of breeding birds: evaluation of the effect and considerations in planning and managing road corridors. Biodiversity and Conservation, 6, 567-581. DOI: 10.1023/A:1018385312751

Rheindt, F. E. (2003). The impact of roads on birds: does song frequency play a role in determining susceptibility to noise pollution? Journal of Ornithology, 144, 295-306. DOI: 10.1007/BF02465629

Ríos-Chelén, A., Salaberria, C., Barbosa, C., Macías-García, C., & Gil, D. (2012). The learning advantage: bird species that learn their song show a tighter adjustment of song to noisy environments thestado an those that do not learn. Journal of Evolutionary Biology, 25, 2171-2180. DOI: 10.1111/j.1420-9101.2012.02597.x

Silva, M. L., Piqueira, J. C., & Vielliard, J. M. E. (2000). Using Shannon entropy on measuring the individual variability in the rufous-bellied thrush Turdus rufiventris vocal communication. Journal of Theoretical Biology, 207, 57-64. DOI: 10.1006/jtbi.2000.2155

Slabbekoorn, H. (2004). Singing in the wild: the ecology of bird-song. En P. Marler & H. Slabbekoorn (Eds.), Nature’s music: the science of birdsong (pp. 178-205). San Diego: Academic/Elsevier.

Slabbekoorn, H. (2013). Songs of the city: noise-dependent spectral plasticity in the acoustic phenotype of urban birds. Animal Behaviour, 85, 1089-1099. DOI: 10.1016/j.anbehav.2013.01.021

Slabbekoorn, H., & Boer-Visser, A. (2006). Cities change the songs of birds. Current Biology, 16, 2326-2331. DOI: 10.1016/j.cub.2006.10.008

Slabbekoorn, H., & Peet, M. (2003). Birds sing at a higher pitching urban noise. Nature, 424, 267. DOI:10.1038/424267a

Slabbekoorn, H., & Ripmeester, E. A. P. (2008). Birdsong and anthropogenic noise: implications and applications for conservation. Molecular Ecology, 17, 72-83. DOI: 10.1111/j.1365-294X.2007.03487.x

Specht, R. (1998). Avisoft SASLab Pro, Sound analysis and synthesis laboratory software for MS-Windows. Berlin, Alemania.

Suthers, R. A., Goller, F., & Pytte, C. (1999). The neuromuscular control of birdsong. Philosophical Transactions of the Royal Society B: Biological Sciences, 354, 927-939. DOI: 10.1098/rstb.1999.0444

Weiserbs, A., & Jacob, J. J. (2001). Is breeding bird distribution affected by motorway traffic noise? Alauda, 69, 483-489.

Wood, W. E. & Yezerinac, S. M. (2006). Song sparrow (Melospiza melodia) song varies with urban noise. Auk, 123, 650-659. DOI: 10.1642/0004-8038(2006)123[650:SSMMSV]2.0.CO;2

Zande, V., Keurs, J., & Weijden, W. J. (1980). The impact of roads on the densities of four bird species in an open field habitat-evidence for a long distance effect. Biological Conservation, 18, 299-321. DOI:10.1016/0006-3207(80)90006-3

Zollinger, S., Podos, J., Nemeth, E., Goller, F., & Brumm, H. (2012). On the relationship between, and measurement of amplitude and frequency in bird song. Animal Behaviour, 84, 1-9. DOI: 10.1016/j.anbehav.2012.04.026

Comments

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2017 Revista de Biología Tropical

Downloads

Download data is not yet available.