Abstract
Several bacteria from the islands of Puerto Rico, Vieques and Trinidad were isolated for their carbohydrate degrading activities. These terrestrial and marine bacterium were collected from pineapple agricultural lands, tropical rain forests, coastlands and mangrove swamps. Organisms were screened for activity using chromogenic substrates (AZCL® Megazyme International Ltd., Ireland). The media composition for the effective culturing of some of the marine organisms has also been standardized. Gram-negative organisms were identified by sequence analysis of the PCR- amplified partial small subunit rRNA gene. Results indicate that the majority of the marine organisms tested belong to the genera Vibrio and Pseudoalteromonas and in the terrestrial environments Chryseobacterium predominated. These experiments reveal that sub-tropical environments are potentially good sources of microorganisms with novel carbohydrase activities.References
Altman, P.L. & D.S. Dittmar. 1966. Environmental Biology. Fed. Amer. Soc. Exper. Biol. Bethesda, Maryland. 456 p.
Altschul, S.F., W. Gish, W. Miller, E.W. Myers & D.J. Lipman. 1990. Basic local alignment search tool. J. Mol. Biol. 215: 403-410.
Ausubel, F.M., R. Brent, R.E. Kingston, D.D. Moore, J.G. Siedman, J.A. Smith & K. Struhl. 1995. Short Protocols in molecular biology. Wiley. 2.11-2.12 p.
Burkholder, P.R. 1963. Some nutritional requirements between microbes of the sea sediments and waters. p. 133-150. In Symposium on marine microbiology. Operhimer C.H. C.C. Thomas. Springfield, III.
Costerton, J.W., J.W. Ingram. & K.J. Cheng. 1974. Structure and function of the cell envelope of gramnegative bacteria. Bact. Rev. 38: 87-110.
Franqui, D.E. 2001. Characterization and purification of starch degrading enzymes from a marine bacterium. M.S. Thesis, Univ. Puerto Rico, Mayaguez, Puerto Rico. 84 p.
Gilbert, H.J. & G.P. Hazlewood. 1991. Genetic modification of fiber digestion. Proc. Nutr. Soc. 50: 173-186.
Greene, R.V. & S.N. Freer. 1986. Growth characteristics of a novel nitrogen-fixing cellulolytic bacterium. Appl. Environ. Microbiol. 52: 982-986.
Himmel, M., W. Adney, J. Baker, R. Elander, J. McMillan, R. Nieves, J. Sheehan, S. Thomas, T. Vizant & M. Zhang. 1997. Advanced bioethanol production technologies: a perspective. p. 1-45. In S. Badal & J. Woodward (eds.). Symposium Series 666, Amer. Chem. Soc. Washington, DC.
Johnson, E.A., M. Sakojoh, G. Halliwell, A. Madia & A.L. Demain. 1982. Saccharification of complex cellulosic substrates by the cellulase of Clostridium thermocellum. Appl. Environ. Microbiol. 43: 1125-1132.
Kubicek, C.P., R. Messner, F. Gruber, R.L. Mach & E.M. Kubicek-Pranz. 1993. The Trichoderma cellulase regulatory puzzle: From the interior life of a secretory fungus. Enz. Microb.Technol. 15: 90-99.
Lamed, R. & E.A. Bayer. 1988. The cellulosome of Clostridium thermocellum. Adv. Appl. Microbiol. 33: 146.
Leathers T.D., N.S. Govind & R.V.Greene. 2000. Biodegradation of poly (3-hydroxybutyrate-co-3-hydrovalerate) by a tropical marine bacterium, Pseudoalteromonas sp. NRRLB-30083. J. Polymers. Environ. 8: 119-124.
Oliver, J.D. 1993. Formation of viable but unculturable cells: p. 239-272. In . S. Kjelleberg (ed.). Starvation in Bacteria. Plenum, New York.
Rao, M. B., A.M. Tanksale, M.S. Ghatge & U.V. Deshpande. 1998. Molecular and biotechnological aspects of microbial proteases. Microbiol. Mol. Biol. Rev. 62: 597-635.
Stackebrandt, E. & B.M. Goebel. 1994. Taxonomic note: A place for DNA-DNA reassociation and 16SrRNA sequence analysis in the present species definition in bacteriology. Int. J. Syst. Bacteriol. 44: 846-849.
Teeri, T.T. 1997. Crystalline cellulose degradation: new insight into function of cellobiohydrolases. Trends in Biotechnol. 15: 160-167.
Tiedje, J.M. 1994. Microbial diversity: Of what value to whom? ASM News 60: 524-525.
Comments
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright (c) 2003 Revista de Biología Tropical