Abstract
Larval survival and growth of Arbacia punctulata (Echinodermata: Echinoidea) fed with five micro-algae at two salinities. Fertilized eggs from an spontaneously spawn of thirty sexually mature sea urchins (Arbacia punctulata) were incubated to complete embryonic development. The echinopluteus larvae (3 ind/ml) were distributed into 50 plastic containers (25 containers at 30 psu and 25 containers at 40 psu) and fed on Tetraselmis chuii, Nannochloropsis oculata, Isochrysis galbana, Chaetoceros gracilis and C. calcitrans under a natural photoperiod. The water of the containers was partially renewed (75%) everyday. Larval anatomic development aspects, daily survival and growth were determined. The growth was determined through postoral arms and body length measurement, and body diameter of twelve larvae during metamorphosis. During the planktonic larval phase, only the I. galbana diet produced similar results for both salinities. The relative growth of larvae was isometric (I) for larvae fed on I. galbana at two salinities and positive allometric for those fed on C. gracilis and C. calcitrans at both salinities. In this study A. punctulata started metamorphosis at day 14 and was completed 30 days after fecundation. Significant differences were detected in post-settlement body growth between the two salinities (F=23.58, p<0.05): growth was better for larvae at 30 psu (final body diameter was 3.14 ± 0.44 mm). The final rate of planktonic larvae was highest with I. galbana (58.33%). For juveniles the rate was 6.48% for those fed on C. gracilis (40 psu in both larvae and juveniles). We recommend the use of this diet and 40 psu for survival or 30 psu for growth. Rev. Biol. Trop. 53(Suppl. 3): 329-336. Epub 2006 Jan 30.References
Alfonso, E. & S. Leal. 1998. Creación y mantenimiento de un cepario de microalgas. Centro de Investigaciones Marinas. Universidad de la Habana, La Habana, Cuba. 21 p.
Astudillo, D. 2003. Sobrevivencia y crecimiento larval del erizo Echinometra lucunter alimentado con dos dietas unialgales y una dieta mixta a base de microalgas. Tesis de pregrado, Universidad de Oriente Boca del Río, Nueva Esparta, Venezuela. 75 p.
Beddingfield, S. & J. McClintock. 1998. Differential survivorship, reproduction, growth and nutrient allocation in the regular echinoid Lytechinus variegatus (Lamarck) fed natural diets. J. Exp. Mar. Biol. Ecol. 226: 195-215.
Ben Amotz, A., R. Fishler & A. Schneller. 1987. Chemical composition of dietary species of marine unicellular algae and rotifers with emphasis on fatty acids. Mar. Biol. 95: 31- 36.
Boidron–Metairon, I. 1988. Morphological plasticity in laboratory – reared equinoplutei of Dendraster excentricus (Eschscholtz) and Lytechinus variegatus (Lamarck) in response to food conditions. J. Exp. Mar. Biol. Ecol. 119: 31-41.
Buitrago, E., C. Lodeiros, C. Lunar, F. Indorf, K. Frontado, M. Pulido & Z. Vásquez. 2003. Efecto de la densidad larvaria sobre el desarrollo, crecimiento y supervivencia del erizo Lytechinus variegatus (Echinodermata: Echinoidea). 31st Scientific meeting of the Association of marine laboratories of the Caribbean, Trinidad & Tobago. 153 p.
Bustos, E. & S. Olave. 2001. Manual: El cultivo del erizo (Loxechinus albus). División de acuicultura Instituto de Fomento Pesquero, Chile. 22 p.
Cabrera, T. 1993. The nutritional value of live feeds and egg quality on the larval growth and survival of flounder (Paralichthys olivaceus Temminck et Schlegel). PhD dissertation, Pusan University, Korea. 194 p.
Eckert, G. 1998. Larval development, growth and morphology of the sea urchin Diadema antillarum. Bull. Mar. Sci. 63: 443 - 451.
Figueira, L. 2003. Crecimiento y sobrevivencia de larvas del camarón Litopenaeus vannamei (BOONE 1931) alimentadas con Brachiomus plicatilis, Artemia y larvas de Lytechinus variegatus. Tesis de pregrado, Universidad de Oriente, Isla de Margarita, Venezuela. 146 p.
Fuentes, I. & C. Barros. 2000. Larval development and metamorphosis of cultured Tetrapygus niger (Echinodermata Echinoidea): An uncommon form of echinoplutei. Invert. reprod. Develop. 37: 201- 209.
Gómez, A. 2000. Abundancia de Lytechinus variegatus (Echinoidea: Toxopneustidae) en la isla de Cubagua, Venezuela. Rev. Biol. Trop. 48: 125-131.
Gómez de Mata, O. 2001. Desarrollo embrionario y larval de Lytechinus variegatus (Lamarck) (Echinodermata: Echinoidea: Toxopneustidae) bajo condiciones de Laboratorio. Trabajo de Ascenso, Universidad de Oriente, Venezuela. 55 p.
Grosjean, P, C. Spirlet, P. Gosselin, D. Vaïtilingon & M. Jangoux. 1998. Land-based, closed-cycle echinoculture of Paracentrotus lividus (Lamarck) (Echinoidea: Echinodermata): A long-term experiment at a pilot scale. J. Shellfish Res. 17: 1523-1531.
Hendler, G, J. Miller, D. Pawson & P. Kier. 1995. Sea stars, sea urchins, and allies: Equinoderms of Florida and the Caribbean. Smithsonian Institutions, Washington & London, 290 p.
Kinne, O. 1977. Echinodermata, p. 936 - 967. In O. Kinne (ed.) Marine Biology. Wiley, Toronto.
Lamare, M. & M. Barker. 1999. In situ estimates of larval development and mortality in the New Zeland sea urchin Evechinus chloroticus (Echinodermata: Echinoidea). Mar. Ecol. Prog. Ser. 180: 197-211.
McEdward, L. 1986. Comparative morphometrics of echinoderm larvae. I. Some relationships between egg size and initial larval form in echinoids. J. Exp. Mar. Biol. Ecol. 96: 251-265.
McEdward, L. & J. Herrera. 1999. Body form and skeletal morphometrics during larval development of the sea urchin Lytechinus variegatus Lamarck. J. Exp. Mar. Biol. Ecol. 232: 151-176.
Metaxa, A. & C. Young. 1998. Responses of echinoid larvae to food patches of different algal densities. Mar. Biol. 130: 433-445.
Montealegre, S. 1999. Aspectos biológicos de Erizo Lytechinus variegatus (Lamarck) (Echinodermata: Echinoidea: Toxopneustidae) en tres localidades del sur de la Isla de Margarita, Venezuela. Tesis de pregrado, Universidad de Oriente, Venezuela. 85 p.
Otero, M. & M. Kelly. 2002. Sea urchin cultivation: Controlling energy flow between somatic and gonadal growth. World Aqua. 33: 43-45.
Renaud, S, L. Thin, & D. Parry. 1999. The gross chemical composition and fatty acid composition of 18 species of tropical Australian microalgae for possible use in mariculture. Aquaculture 170: 147-159.
Pérez, J, M. Nirchio, & J. Gómez. 2000. Aquaculture: part of the problem, not a solution. Nature 408: 514.
Roller, R. & W. Stickle. 1993. Effects of temperate and salinity acclimation of adults on larval survival, physiology, and early development of Lytechinus variegatus (Echinodermata: Echinoidea). Mar. Biol. 116: 583-591.
Silva, A. 1999. Efecto de la microalga Isochrysis galbana en el cultivo temprano de larvas de Paralichthys adspersus. Cienc. Mar. 25: 267-276.
Sokal, R. & F. J. Röhlf. 1983. Biometría. Principios y métodos estadísticos en la investigación biológica. H. Blume, Madrid. 832 p.
Volkman, J, S. Jeffrey, P. Nichols, G. Rogers, & C. Garland. 1989. Fatty acid and lipid composition of 10 species of microalgae used in mariculture. J. Exp. Mar. Biol. Ecol. 128: 219-240.
Young, C. & S. George. 2000. Larval development of the tropical deep-sea echinoid Aspidodiadema jacobyi: Phylogenetic implications. Biol. Bull. 198: 387-395.
Zamora, S. & W. Stotz. 1994. Cultivo masivo en laboratorio de Juveniles de erizo Loxechinus albus (Molina, 1782), (Echinodermata: Echinoidea). Inv. Pesq. 38: 37-54.
Zoppi, E. 1967. Contribución al estudio de los equinodermos de Venezuela. Acta Biol. Venez. 5: 267-333.
Comments
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright (c) 2005 Revista de Biología Tropical