Revista de Biología Tropical ISSN Impreso: 0034-7744 ISSN electrónico: 2215-2075

OAI: https://revistas.ucr.ac.cr/index.php/rbt/oai
Effects of soil fertilization on tree growth in tropical rainforests of Choco, Colombia.
PDF (Español (España))
HTML (Español (España))

Supplementary Files

Sin título (Español (España))

Keywords

balance del carbono
Chocó biogeográfico
nitrógeno
fósforo
potasio
tasa de crecimiento relativo
productividad primaria neta.
carbon balance
biogeographic Chocó
nitrogen
phosphorus
potassium
relative growth rate
net primary productivity.

How to Cite

Quinto Mosquera, H., Rivas Urrutia, Y., & Moreno Hurtado, F. (2017). Effects of soil fertilization on tree growth in tropical rainforests of Choco, Colombia. Revista De Biología Tropical, 65(3), 1161–1173. https://doi.org/10.15517/rbt.v65i3.29442

Abstract

The tree diameter growth (CDA) is a fundamental component of net primary productivity (NPP) and carbon storage in forest ecosystems; therefore, it plays a key role in mitigating global climate change. It has been hypothesized that CDA in lowland tropical rain forests is limited by the availability of soil nutrients, yet little experimental evidence is available, especially in forest of high precipitation (>5 000 mm per year). This study evaluated the effects of soil fertilization on CDA in tropical rainforests of the Colombian Pacific, one of the wettest areas of the world. Such effects were assessed at the level of localities, diametric categories, wood density, and functional groups. To do this, two arboreal inventories (2014 and 2015) were performed, five fertilization treatments (Nitrogen-N, Phosphorus-P, Potassium-K, NPK and Control) were applied, and the CDA was determined in five permanent plots of one hectare. We found that the application of N and NPK had little effect on CDA as compared to the control; while the addition of P and K produced significant reduction of the trees relative growth rate, with respect to the control at the level of localities, in small and medium sized trees, in all wood densities (low, medium and high), and in the group of dicotyledonous species. Although these results did not corroborate the hypothesis of nutrient limitation on CDA in the studied forests, it was found that during the early years of fertilization (mainly with P and K), different patterns of aboveground and belowground NPP occurred to maximize photosynthesis and soil nutrient acquisition.

https://doi.org/10.15517/rbt.v65i3.29442
PDF (Español (España))
HTML (Español (España))

References

Alvarado, A., & Raigosa, J. (2012). Nutrición y Fertilización Forestal en Regiones Tropicales. San José, Costa Rica: Asociación Costarricense de la Ciencia del Suelo.

Álvarez-Clare, S. & Mack, M. C. (2015). Do foliar, litter, and root nitrogen and phosphorus concentrations reflect nutrient limitation in a lowland tropical wet forest? PLoS ONE, 10(4), e0123796. doi 10.1371/journal.pone.0123796

Álvarez-Clare, S., Mack, M. C., & Brooks, M. (2013). A direct test of nitrogen and phosphorus limitation to net primary productivity in a lowland tropical wet forest. Ecology, 94(7), 1540-1551.

Austin, A. T., & Vitousek, P. M. (1998). Nutrient dynamics on a precipitation gradient in Hawai'i. Oecologia, 113(4), 519-529.

Baker, T. R., Phillips, O. L., Malhi, Y., Almeida, S., Arroyo, L., Di Fiore, A., Erwin, T., (…), & Vasquez Martinez, R. (2004). Variation in wood density determines spatial patterns in Amazonian forest biomass. Global Change Biology, 10(5), 545-562.

Baribault, T. W., Kobe, R. K., & Finley, A. O. (2012). Tropical tree growth is correlated with soil phosphorus, potassium, and calcium, though not for legumes. Ecological Monographs, 82(2), 189-203.

Bloom, A. J., Chapin III, F. S., & Mooney, H. A. (1985). Resource limitation in plants - an economic analogy. Annual Review of Ecology and Systematics, 16, 363-392.

Brown, S. (1997). Estimating biomass and biomass change of tropical forests: A primer. Food and Agriculture Organization, Roma. (UN FAO Forestry Paper; no. 134). Recuperado de http://www.fao.org/docrep/w4095e/w4095e00.HTM

Chave, J., Coomes, D., Jansen, S., Lewis, S. L., Swenson, N. G., & Zanne, A. E. (2009). Towards a worldwide wood economics spectrum. Ecology Letters, 12(4), 351-366.

Cleveland, C. C., Townsend, A. R. Taylor, P., Alvarez-Clare, S., Bustamante, M., Chuyong, G., Dobrowski, S. Z., (…), & Wieder, W. R. (2011). Relationships among net primary productivity, nutrients and climate in tropical rain forest: a pan-tropical analysis. Ecology Letter, 14(9), 939-947.

Cusack, D. F., Silver, W. L., Torn, M. S., & McDowell, W. H. (2011). Effects of nitrogen additions on above and belowground carbon dynamics in two tropical forests. Biogeochemistry, 104(1), 203-225.

Dalling, J. W., Heineman, K., Lopez, O. R., Wright, S. J., & Turner, B. L. (2016). Nutrient availability in tropical rain forests: The paradigm of Phosphorus limitation. In G. Goldstein, & L.S. Santiago (Eds.), Tropical tree physiology. Adaptations and responses in a changing environment (pp. 261-273). Switzerland: Springer International Publishing.

Dixon, R. K., Brown, S., Houghton, R. A., Solomon, A. M., Trexler, M. C., & Wisniewski, J. (1994). Carbon pools and flux of global forest ecosystems. Science, 263(5144), 185-190.

Fisher, J. B., Malhi, Y., Torres, I. C., Metcalfe, D. B., van de Weg, M. J., Meir, P., Silva-Espejo, J. E., & Huasco, W. H. (2013). Nutrient limitation in rainforests and cloud forests along a 3,000-m elevation gradient in the Peruvian Andes. Oecologia, 172(3), 889-902.

Gentry, A. (1993). A field guide to the families and genera of woody plants of Northwest South American (Colombia, Ecuador, Peru). Washington, DC, USA: Conservation International.

Hedin, L. O., Brookshire, J., & Menge, D., & Barron, A. R. (2009). The Nitrogen Paradox in Tropical Forest Ecosystems. The Annual Review of Ecology, Evolution, and Systematics, 40, 613-635.

Hoshmand, A. R. (1998). Statistical Methods for Environmental y Agricultural Sciences. Second edition. New York, USA: CRC Press LLC.

Panel Intergubernamental de Cambio Climático (IPCC). (2014). Cambio climático 2014: Informe de síntesis. In R. K. Pachauri, & L. A. Meyer (Eds.), Contribución de los Grupos de trabajo I, II y III al Quinto Informe de Evaluación del Grupo Intergubernamental de Expertos sobre el Cambio Climático. Ginebra, Suiza: IPCC. Recuperado de http://www.ipcc.ch/index.htm

Kaspari, M., Garcia, M. N., Harms, K. E., Santana, M. Wright, S. J., & Yavitt, J. B. (2008). Multiple nutrients limit litterfall and decomposition in a tropical forest. Ecology Letters, 11(1), 35-43.

Lambers, H., Chapin III, F. S., & Pons, T. L. (2012). Plant Physiological Ecology (Second Ed.). New York, USA: Springer Science Business Media, LLC.

Mahecha, G. (1997). Fundamentos y metodologías para la identificación de plantas (Proyecto Biopacifico, Ministerio del Medio Ambiente, GEF-PNUD). Santa Fé de Bogotá, Colombia: Lerner Ltda.

Malhi, Y., Doughty, C., & Galbraith, D. (2011). The allocation of ecosystem net primary productivity in tropical forests. Philosophical Transactions of the Royal Society B: Biological Sciences, 366(1582), 3225-3245.

Mayor, J. R., Wright, S. J., & Turner, B. L. (2014). Species-specific responses of foliar nutrients to long term nitrogen and phosphorus additions in a lowland tropical forest. Journal of Ecology, 102(1), 36-44.

Mercado, L. M., Patiño, S., Domingues, T. F., Fyllas, N. M., Weedon, G. P., Sitch, S., (…), & Lloyd, J. (2011). Variations in Amazon forest productivity correlated with foliar nutrients and modelled rates of photosynthetic carbon supply. Philosophical Transactions of the Royal Society B, 366(1582), 3316-3329.

Miller, H. G. (1981). Forest fertilization: some guiding concepts. Forestry, 54(2), 157-168.

Miller, A. J., Schuur, E. A. G., & Chadwick, O. A. (2001). Redox control of phosphorus pools in Hawaiian montane forest soils. Geoderma, 102(3), 219-237.

Mirmanto, E., Proctor, J., Green, J., Nagy, L., & Suriantata. (1999). Effects of nitrogen and phosphorus fertilization in a lowland evergreen rainforest. Philosophical Transactions of the Royal Society B, 354 (1391), 1825-1829.

Mo, Q., Zou, B., Li, Y., Chen, Y., Zhang, W., Mao, R., Ding, Y., (…), & Wang, F. (2015). Response of plant nutrient stoichiometry to fertilization varied with plant tissues in a tropical forest. Scientific Reports, 5(14605), 1-12.

Mostacedo, B., & Fredericksen, T. (2000). Manual de Métodos Básicos de Muestreo y Análisis en Ecología Vegetal. Santa Cruz, Bolivia: Editora El País.

Newbery, D. M., Chuyong, G. B., Green, J. J., Songwe, N. C., Tchuenteu, F., & Zimmermann, L. (2002). Does low phosphorus supply limit seedling establishment and tree growth in groves of ectomycorrhizal trees in a central African rainforest? New Phytologist, 156(2), 297-311.

Ostertag, R. (2010). Foliar nitrogen and phosphorus accumulation responses after fertilization: an example from nutrient-limited Hawaiian forests. Plant and Soil, 334(1), 85-98.

Paoli, G. D., & Curran, L. M. (2007). Soil nutrients limit fine litter production and tree growth in mature lowland forest of southwestern Borneo. Ecosystems, 10(3), 503-518.

Phillips, O. L., Malhi, Y., Higuchi, N., Laurance, W., Núñez, P., Vásquez, M., Laurance, S., Ferreira, L. Stern, M., Brown, S., & Grace, J. (1998). Changes in the carbon balance of tropical forest: Evidence from long-term plots. Science, 282(5388), 439-442.

Poorter, L., McDonald, I., Alarcon, A., Fichtler, E., Licona, J. C., Pena-Claros, M., (…), & Sass-Klaassen, U. (2010). The importance of wood traits and hydraulic conductance for the performance and life history strategies of 42 rainforest tree species. New Phytologist, 185(2), 481-492.

Poveda, I. C., Rojas, C., Rudas, A., & Rangel, O. (2004). El Chocó biogeográfico: Ambiente Físico. In O. Rangel (Ed.), Colombia Diversidad Biótica IV. El Chocó biogeográfico/ Costa Pacífica. Bogotá, Colombia: Instituto de Ciencias Naturales. Universidad Nacional de Colombia.

Quinto-Mosquera, H., Moreno, F. H., Caicedo, M. H., & Pérez, L. M. (2016). Biomasa de raíces finas y fertilidad del suelo en bosques pluviales tropicales del Pacífico Colombiano. Colombia Forestal, 19(1), 53-66.

Quinto-Mosquera, H., & Moreno, F. H. (2016). Precipitation effects on soil characteristics in tropical rain forests of the Chocó biogeographical region. Revista Facultad Nacional de Agronomía Medellín, 69(1), 7813-7823.

Quinto-Mosquera, H. (2016). Evaluación del efecto de la fertilización del suelo sobre la productividad primaria neta de bosques pluviales tropicales del departamento del Chocó (Tesis de doctorado). Universidad Nacional de Colombia sede Medellín, Medellín, Colombia.

Salisbury, F. B. & Ross, C. W. (1994). Fisiología Vegetal (4ta. Ed.). México D.F: Grupo Editorial Iberoamérica S.A.

Sánchez, P. A. (1976). Properties and management of soils in the tropics. New York, USA: Wiley-Interscience Publications.

Santiago, L. S. (2015). Nutrient limitation of eco-physiological processes in tropical trees. Trees, 29(5), 1291-1300.

Sayer, E. J., & Banin, L. F. (2016). Tree nutrient status and nutrient cycling in tropical forest-Lessons from fertilization experiments. In G. Goldstein, & L.S. Santiago (Eds.), Tropical tree physiology. Adaptations and responses in a changing environment (pp. 275-297). Switzerland: Springer International Publishing.

Schuur, E. A. G. (2003). Net primary productivity and global climate revisited: the sensitivity of tropical forest growth to precipitation. Ecology, 84(5), 1165-1170.

Shieh, G., & Jan, S. (2004). The effectiveness of randomized complete block design. Statistica Neerlandica, 58(1), 111-124.

Statistical Graphics Corp. (2002). Statgraphics Plus Centurium XV. Version 5.1. Recuperado de http://www.statgraphics.com/

Sullivan, B. W., Alvarez-Clare, S., Castle, S. C., Porder, S., Reed, S. C., Schreeg, L., Cleveland, C. C., & Townsend, A. R. (2014). Assessing nutrient limitation in complex forested ecosystems: alternatives to large-scale fertilization experiments. Ecology, 95(3), 668-681.

R Core Team. (2012). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Recuperado de http://www.R-project.org/

Vitousek, P. M., & Farrington, H. (1997). Nutrient limitation and soil development: Experimental test of a biogeochemical theory. Biogeochemistry, 37(1), 63-75.

Vitousek, P. M. (1984). Litterfall, nutrient cycling and nutrient limitation in tropical forests. Ecology, 65(1), 285-298.

Walker, T. W. & Syers. J. K. (1976). The fate of phosphorus during pedogenesis. Geoderma, 15(1), 1-19.

Wright, S. J., Yavitt, J. B., Wurzburger, N., Turner, B. L., Tanner, E. V. J., Sayer, E. J., Santiago, L. S., (…), & Corre, M. D. (2011). Potassium, phosphorus, or nitrogen limit root allocation, tree growth, or litter production in a lowland tropical forest. Ecology, 92(8), 1616-1625.

Wurzburger, N. & Wright, S. J. (2015). Fine-root responses to fertilization reveal multiple nutrient limitation in a lowland tropical forest. Ecology, 96(8), 2137-2146.

Comments

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2017 Revista de Biología Tropical

Downloads

Download data is not yet available.