https://revistas.ucr.ac.cr/index.php/rbtRevista de Biología Tropical ISSN Impreso: 0034-7744 ISSN electrónico: 2215-2075

Spatial and temporal diversity of spiders in microhabitats of Citrus sinensis orchards, (Rutaceae) Corrientes, Argentina

Helga Cecilia Achitte Schmutzler, Eduardo Adolfo Porcel, Gilberto Avalos



DOI: https://doi.org/10.15517/rbt.v66i4.30612

Abstract


We analyze the distribution of spider assemblages at three microhabitats (canopy, tree trunk and soil) in Citrus sinensis orchards (Rutaceae) in the Province of Corrientes, Argentina. Spiders were collected monthly using four sampling techniques: beating foliage, leaf litter sifting, pitfall traps and direct capture by hand. A total of 2160 samples were examined and 7194 spiders were collected (2462 on the canopy, 983 on trunk and 3749 on the floor) belonging to 34 families and 200 species/morphospecies of Araneomorphae. There were significant differences among microhabitats and months in the structure of the spider communities, according to analysis of similarity (ANOSIM). The diversity was highest on the canopy, followed by soil and tree trunk. Araneidae, Salticidae and Anyphaenidae were the most abundant taxa in the canopy; the dominant species were Jessica erythostoma and Cheiracanthium inclusum, a predator of the leaf herbivore Phyllocnistis citrella (Lepidoptera) a pest of Citrus spp. The most abundant families on the tree trunk were Tetragnathidae, Hersiliidae and Theridiidae, Iviraiva pachyura was a species specialist in such microhabitat; and Leucauge venusta was an opportunistic species, because their abundance increaseds markedly in anthropic environments that modified by man. The most abundant families on the floor were Lycosidae, Linyphiidae and Coriniidae. In this habitat, Lycosa erythrognatha and Pardosa plumipedata were dominant species. The Chao-Jaccard similarity index was highest between the canopy and trunk (J-C=0.95), likewise ordination by nonmetric multidimensional scaling (NMDS) revealed strong differentiation between assemblages of soil spiders and canopy and trunk spiders. Also, on the soil the temporary replacement of species was greater and the seriation method was significant (z=3.82, p=0.00) therefore there was a succession of species during the year. The different species in each microhabitat probably avoided competition by using different hunting strategies and different ecological resources, in addition to specific patterns of temporal distribution. Our results suggest that anthropic environments, such as in Citrus orchards, tend to harbor populations of spiders able to adapt to those environments and interact in a balanced way in space and time.

Keywords


microhabitat; Araneae; agroecosystem; oranges; biological control

References


Achitte-Schmutzler, H. C., Avalos, G., & Oscherov, E. B. (2016). Comunidades de arañas en dos localidades del sitio RAMSAR Humedales Chaco, Argentina. Cuadernos de Investigación UNED, 8(2), 115-121.

Almada, M. S. (2014). Biodiversidad y densidad de arañas (Araneae) en un sistema agropastoril, tendientes a mejorar el impacto de los enemigos naturales sobre insectos plaga (Tesis doctoral). Facultad de Ciencias Naturales y Museo, La Plata, Argentina.

Almada, M. S., & Sarquis, J. A. (2016). Araneofauna (Arachnida: Araneae) de suelo en bosques nativos, exóticos y pajonales del Parque General San Martín, Entre Ríos Argentina. Ecología Austral, 26, 286-292.

Almada, M. S., Sosa, M. A., & González, A. (2012). Araneofauna (Arachnida: Araneae) en cultivos de algodón (Gossypium hirsutum) transgénicos y convencionales en el norte de Santa Fe, Argentina. Revista de Biología Tropical, 60(2), 611-623.

Amalin, D. M., & Peña, J. E. (1999). Predatory spiders in lime orchards and their importance in the control of citrus leafminer, Phyllocnistis citrella (Lepidoptera: Gracillariidae). Proceedings of the Florida State Horticultural Society, 112, 222-224.

Amalin, D. M., Peña, J. E., & McSorley, R. (1996). Abundance of spiders in lime groves and their potential role in suppressing the citrus leafminer population. En M. A., Hoy (Ed.), Proceedings, International Meeting: Managing the Citrus Leafminer (pp. 23-25). Orlando, Florida: University of Florida.

Amalin, D. M., Peña, J. E., McSorley, R., Browning, H. W., & Crane, J. H. (2001). Comparison of different sampling methods and effect of pesticide application on spider populations in line orchard in South Florida. Environmental Entomology, 30, 1021-1027.

Argov, Y., & Rossler, Y. (1996). Introduction, Release and Recovery of Several Exotic Natural Enemies for Biological Control of the Citrus Leafminer, Phyllocnistis citrella, in Israel. Phytoparasitica, 24, 33-38.

Armendano, A., & González, A. (2011). Efecto de las arañas (Arachnida: Araneae) como depredadoras de insectos plaga en cultivos de alfalfa (Medicago sativa) (Fabaceae) en Argentina. Revista de Biología Tropical, 59(4), 1651-1662.

Avalos, G., Achitte-Schmutzler, H. C., De los Santos, M. E. (2018). Caracterización de la fauna de arañas en monocultivos de Eucalyptus y Pinus de la Reserva del Iberá, Corrientes, Argentina. Revista Mexicana de Biodiversidad, 89, 134-148.

Avalos, G., Bar, M. E., Oscherov, E. B., & González, A. (2013). Diversidad de Araneae en cultivos de Citrus sinensis (Rutaceae) de la Provincia de Corrientes, Argentina. Revista de Biología Tropical, 61(3), 1243-1260.

Avalos, G., Damborsky, M. P., Bar, M. E., Oscherov, E. B., & Porcel, E. A. (2009). Composición de la fauna de Araneae (Arachnida) de la Reserva Provincial Iberá, Corrientes, Argentina. Revista de Biología Tropical, 57(1-2), 339-351.

Avalos, G., Oscherov, E. B., & González, A. (2015). Preferencias alimentarias de Araneus uniformis (Araneae: Araneidae) y Jessica erythrostoma (Araneae: Anyphaenidae) en condiciones de laboratorio. Revista Ibérica de Aracnología, 27, 109-109.

Bale, J. S., van Lenteren, J. C., & Bigler, F. (2008). Biological control and sustainable food production. Philosophical Transactions of the Royal Society B, 363, 761-776.

Barrientos, J. A., Villalba, M., Alvis-Davila, L., & Garcia-Mar, F. (2010). Identification and abundance of spiders (Araneae) in citrus crops of Valencia. Boletín de sanidad vegetal. Plagas, 36, 69-85.

Begon, M., Harper, J. L., & Townsend, C. R. (1995) Ecología: Individuos, poblaciones y comunidades. Barcelona: Ediciones Omega.

Benamú Pino, M. A. (2004). Estudio Comparativo de la diversidad de arañas de un campo en abandono y un cultivo convencional de limonero (Citrus limón L. Burm) en Rincón del Cerro, Montevideo, Uruguay (Tesis de Maestría). Montevideo, Uruguay: Universidad de la República.

Breene, G. R., Dean, D. A., & Meagher, R. L. (1993). Spiders and ants of Texas citrus groves. Florida Entomology, 76, 168–170.

Brower, J. C., & Kyle, K. M. (1988). Seriation of an original data matrix as applied to palaeoecology. Lethaia, 21, 79–93.

Cabrera, A. L., & Willink, A. (1973). Biogeografía de América Latina. Monografía 13, Serie de Biología. Washington, D.C., EE.UU: Organización de Estados Americanos (OEA).

Cardoso, P., Pekár, S., Jocqué, R., & Coddington, J .A. (2011). Global patterns of guild composition and functional diversity of spiders. PlosOne 6(6): e21710. DOI: 10.1371/journal.pone.0021710

Carroll, D. P. (1980). Biological notes on the spiders of some citrus groves in central and southern California. Entomological News, 91(5), 147-154.

Chao, A., Chazdon, R. L., Colwell, R. K., & Shen, T. J. (2005). A new statistical approach for assessing similarity of species composition with incidence and abundance data. Ecology Letters, 8, 148–159.

Clarke, K. R. (1993). Non-parametric multivariate analysis of changes in community structure. Australian Journal of Ecology, 18, 117-143.

Colwell, R. K. (2013). EstimateS: statistical estimation of species richness and shared species from samples (Versión 9.1.0). Recuperado de http://viceroy.eeb.uconn.edu/estimates/

Colwell, R. K., Mao, C. X., & Chang, J. (2004). Interpolating, extrapolating, and comparing incidence-based species accumulation curves. Ecology, 85, 2717-2727.

Costa, F. G., Pérez-Miles, F., Gudynas, E., Prandi, L., & Capocasale, R. (1991). Ecología de los arácnidos criptozoicos, excepto ácaros, de Sierra de las Ánimas (Uruguay). Órdenes y Familias. Aracnología, 13, 15:1-41.

Danza, A. (2017). Perfil de mercado de cítricos dulces. Subsecretaria de mercados agropecuarios. Ministerio de Agroindustria, Presidencia de la Nación, Argentina. Recuperado de https://www.agroindustria.gob.ar/sitio/areas/ss_mercados_agropecuarios/areas/frutas/_archivos/000030_Informes/100007_Perfil%20de%20Mercado/000008_Perfil%20del%20mercado%20de%20c%C3%ADtricos%20dulces%202017.pdf

Dean, D. A., Sterling, W. L., &. Horner, N. V. (1982). Spiders in eastern Texas cotton fields. Journal of Arachnology, 10, 251-260.

Díaz Porres, M., Rionda, M. H., Duhour, A. E., & Momo, F. R. (2014). Artrópodos del suelo: Relaciones entre la composición faunística y la intensificación agropecuaria. Ecología Austral, 24, 327-334.

Eisner, T., Alsop, R., & Ettershank, P. (1964). Adhesiveness of spider silk. Science, 146, 1058-1061.

Elizondo-Solís, J. M. (2002). Inventario y fluctuación poblacional de insectos y arañas asociadas con Citrus sinensis en la región Huetar Norte de Costa Rica. Manejo integrado de plagas y Agroecología, 64, 88-98.

Escobar, M. J., Avalos, G., & Damborsky, M. P. (2012). Diversidad de Araneae (Arachnida) en la Reserva Colonia Benítez, Chaco Oriental Húmedo, Argentina. Revista FACENA, 28, 3-17.

Florez, D. E. (2000). Comunidad de arañas de la región Pacífica del departamento del valle del Cauca, Colombia. Revista Colombiana de Entomología, 26, 77-81.

Foelix, R. F. (1996). Biology of Spiders. New York, Estados Unidos: Oxford University Press.

Garijo, C., & García, E. J. (1994) Phyllocnistis citrella (Stainton, 1856) (Insecta: Lepidoptera: Gracillariidae: Phyllocnistinae) en los cultivos cítricos de Andalucía (sur de España): Biología, ecología y control de la plaga. Boletín de Sanidad Vegetal Plagas, 20, 815-826.

Gómez, C. A. (2016). Malezas en plantaciones cítricas: características y métodos de control. Instituto Nacional de Tecnología Agropecuaria, INTA. Recuperado de https://inta.gob.ar/documentos/malezas-en-plantaciones-citricas-caracteristicas-y-metodos-de-control

Grismado, C. J., Crudele, I., Damer, L., López, N., Olejnik, N., & Trivero, S. (2011). Comunidades de arañas de la Reserva Natural Otamendi, Provincia de Buenos Aires. Composición taxonómica y riqueza específica. Revista Biológica, 14, 7-48.

Hammer, O, Harper, D. A. T., & Ryan, P. D. (2001). PAST: palaeontological statistics. Version 2.17. Recuperado de http:// folk.uio.no/ohammer/past

Harwood, J. D., & Obrycki, J. J. (2005). Quantifying aphid predation rates of generalist predators in the field. European Journal of Entomology, 102, 335-350.

Henschell, J. R., & Lubin, Y. D. (1997). A test of habitat selection at two spatial scales in a sit and wait predator: A web spider in the Naimb Desert Dunes. Journal Animal Ecology, 66, 401-413.

Heublein, D. (1983). Räumliche Verteiung, Biotoppräferenzen und kleinräumige Wanderungen der epigäischen Spinnen-fauna eines Wald-Wiesen-Ökotons; ein Breitag zum Thema “Randeffekt”. Zoologische Jahrbücher (Systematik), 110, 473-519.

Jackson, D. A., Peres-Neto, P. R., & Olden, J. D. (2001). What controls who is where in freshwater fish communities — the roles of biotic, abiotic, and spatial factors. Canadian Journal of Fisheries and Aquatic Sciences, 58, 157-170.

Jiménez, M. L., & Tejas, A. (1996). Variación temporal de la araneofauna en frutales de la región del Cabo, Baja California Sur. México. Southwestern Entomolology, 21, 331-335.

Jiménez-Valverde, A., & Hortal, J. (2003). La curva de acumulación de especies y la necesidad de evaluar los inventarios biológicos. Revista Ibérica de Aracnología, 8, 151-161.

Kacar, G. (2015). Biodiversity of Spider Species, Interactions with Horticultural Crops and a New Record for Turkey. Pakistan journal of zoology, 47(2), 545-550.

Keswani, S. (2014). Diversity, population and microhabitat used by spiders in citrus agroecosystem. Indian Society of Arachnology, 3(2), 90-101.

Krell, F. T. (2004). Parataxonomy versus taxonomy in biodiversity studies-pitfalls and applicability of ‘morphospecies’ sorting. Biodiversity and Conservation, 13, 795–812.

Lee, J. H., & Kim, S. T. (2001). Use of spiders as natural enemies to control rice pest in Korea. Retrieved from: http://ag.udel.edu/ delpha/8323

Mansour, F., Ross, J., Edwards, G., Whitcomb, W. H., & Richman, D. (1982). Spiders of Florida Citrus groves. Florida Entomology, 65, 514-522.

Mansour, F., & Whitcomb, W.H. (1986). The spiders of a citrus grove in Israel and their role as biocontrol agents of Ceroplastes floridensis [Homoptera: Coccidae]. Entomophaga, 31, 269–276.

Marín Loayza, R., Herrera, J. A., & Páez, J. N. (2013). Biodiversidad microtemporal de la aracnofauna en el agrosistema del olivo cultivar Arauco en La Rioja, Argentina. UNLaR Ciencia, 1(1), 15-18.

Martin, T. J., & Major, R. E. (2001). Changes in wolf spider (Araneae) assemblages across woodland–pasture boundaries in the central wheat-belt of New South Wales, Australia. Austral Ecology, 26, 264-274.

McDaniel, S. G., & Sterling, W. L. (1982). Predation of Heliothis virescens (F.) Eggs on Cotton in East Texas. Environmental Entomology, 11, 60–66.

Michel, A. K., & Winter, S. (2009). Tree microhabitat structures as indicators of biodiversity in Douglas-fir forests of different stand ages and management histories in the Pacific Northwest, U.S.A. Forest Ecology and Management, 257, 1453–1464.

Molina, N., Lombardo, E., Ramírez, A., Vallejos, A., Volpato, L., & Zubrzycki, H. (2005). Informe citrícola de la Provincia de Corrientes. INTA EEA Bella Vista, 29, 1-9.

Montti, M. I., Visciglio, S. B., Raviol, F. H., Subovich, G. E., & Munitz, M. S. (2013). Incidencia de la carga inicial de pesticidas en fruta sobre los niveles residuales en aceites esenciales cítricos. Ciencia, Docencia y Tecnología, 24(47), 187-218.

Monzó, C., Mollá, O., Castañera, P., & Urbaneja, A. (2009). Activity-density of Pardosa cribata in Spanish citrus orchards and its predatory capacity on Ceratitis capitata and Myzus persicae. BioControl, 54, 393-402.

Moreno, C. E. (2001). Manual de métodos para medir la biodiversidad. Xalapa, México: Universidad Veracruzana.

Morrone, J. J. (2001). Biogeografía de América Latina y el Caribe. Zaragoza, España: M&T-Manuales &Tesis SEA.

Nentwig, W. (1987).The prey of spiders. En W. Nentwig (Ed.), Ecophysiology of Spiders (pp. 249-263). Berlin, Heidelberg: Springer-Verlag.

Nentwig, W. (1993). Spiders of Panama. Fauna & Flora Handbook Nº12. Florida, USA: The Sandhill Crane Press.

Nyffeler, M., & Benz, G. (1981). Field studies on the feeding ecology of spiders: observations in the region of Zurich (Switzerland). Anzeiger für Schäedlingskunde, Pflanzenschutz, Umweltschutz, 54, 33-39.

Nyffeler, M., & Benz, G. (1989). Foraging ecology and predatory importance of a guild of orb-weaving spiders in a grassland habitat. Journal of Applied Entomology, 107, 166-184.

Nyffeler, M., Sterling, W., & Dean, D. (1994). Insectivorus activities of spiders in United States field crops. Journal of Applied Entomology, 118, 113-128.

Orellana, M. O., Ávila, I. H., & Estrada, P. M. (2012). Diversity of spiders in an almond Prunus dulcis (Mill.) D.A. Webb orchard in the Metropolitan Region of Chile (Central Chile). Idesia, 30(1), 17-24. DOI: 10.4067/S0718-34292012000100003

Patrick, M. & Canard, A. (1997). Maintaining spider biodiversity in agroecosystems as a tool in pest control. Agriculture Ecosystems & Environment, 62(2-3), 229-235.

Pearce, S., & Zalucki, M. P. (2006). Do predators aggregate in response to pest density in agroecosystems? Assessing within-field spatial patterns. Journal of Applied Ecology, 43, 128-140.

Pérez-Miles, F., Simó, M., Toscano-Gadea, C., & Useta, G. (1999). La comunidad de Araneae criptozóicas del Cerro de Montevideo, Uruguay: Un ambiente rodeado por urbanización. Physis, 57, 73-78.

Quijano, L. C., & Neis Martínez, H. (2015). Variación temporal de la araneofauna (Arachnida: Araneae) en un fragmento de bosque seco tropical (bst), en el Departamento del Atlántico, Colombia. Boletín científico Museo de Historia Natural, 19(2), 381-396.

Ramírez, M. J. (1999). Orden Araneae. En F. A Crespo, M. S. Iglesias, & A. C. Valverde (Eds.), El ABC en la determinación de artrópodos. Claves para especímenes presentes en la Argentina I (pp.39−59). Buenos Aires, Argentina: Editorial CCC Educando.

Riechert, S. E., & Lockley, T. (1984). Spiders as biological control agents. Annual Review of Entomology, 29, 299-320.

Rodrigues, E. N. L., Mendonca Jr., M. de S.; Rodrigues, P. E. S., & Ott, R. (2015). Diversity, composition and phenology of araneid orb-weavers (Araneae, Araneidae) associated with riparian forests in southern Brazil. Iheringia, Série Zoologia, 105(1), 53-61.

Rubio, G. D.; Corronca, J. A, & Damborsky, M. P. (2008). Do spider diversity and assemblage change on different contiguous habitats? A case on protected habitats of Humid Chaco Ecoregion, North-East of Argentina. Environmental Entomology, 37(2), 419–430.

Rubio, G. D., Minoli, I., & Piacentini, L. (2007). Patrones de abundancia de cinco especies de arañas lobo (Araneae: Lycosidae) en dos ambientes del Parque Nacional Mburucuyá, Corrientes, Argentina. Brenesia, 67, 59-67.

Ruzicka, V. (1987). Biodiagnistic evaluation of epigeic spider communities. Ekológia (CSSR), 6(4), 345-357.

Schmidt, M. H., & Tscharntke, T. (2005). Landscape context of sheetweb spider (Araneae: Linyphiidae) abundance in cereal fields. Journal of Biogeography, 32,467–473.

Sokal, R. R., & Rohlf, F. J. (1995). Biometry: The principles and practice of statistics in biological research. New York: W.H. Freeman and Company.

Sorensen, L. L., Coddington, J. A., & Scharff, N. (2002). Inventorying and estimating subcanopy spider diversity using semiquantitative sampling methods in an Afromontane forest. Environmental Entomology, 31(2), 319-330.

Szinetar, C., & Horvath, R. (2005). A review of spiders in tree trunks in Europe (Araneae). Acta Zoologica Bulgarica Supplementum, 1, 221-257.

Toti, D. S., Coyle, F. A., & Miller, J. A. (2000). A structured inventory of Appalachian grass bald and heath bald spider assemblages and a test of species richness estimator performance. Journal of Arachnology, 28, 329-345.

Turnbull, A. L. (1960). The spider population of a stand of oak (Quercusrobur L.) in Wytham Wood, Berks., England. Entomological Society of Canada, 92, 110-124.

Uetz, G. W. (1976). Gradient analysis of spider communities in a streamside forest. Oecologia, 22, 373-385.

Van Den Berg, A. M., Dippenaar-Schoeman, A. S., Deacon, V. E., & Anderson, S. H. (1992). Interactions between Citrus Psylla, Trioza erytreae (Hem. Triozidae), and spiders in an unsprayed Citrus orchard in the Transvaal Lowveld. Entomophaga, 37, 599-608.

Wise, D. H. (1993). Spiders in Ecological Webs. Cambridge. Inglaterra: Cambridge University Press.

Wolda, H. (1988). Insect seasonality: why?. Annual Review of Ecology and Systematics, 19, 1-18.

World Spider Catalog. (2018). World Spider Catalog, Version 19.0. Natural History Museum Bern. Recuperado de http://wsc.nmbe.ch

Ziesche, T. M., & Roth, M. (2008). Influence of environmental parameters on small-scale distribution of soil-dwelling spiders in forests: What makes the difference, tree species or microhabitat?. Forest Ecology and Management, 255, 738-752.


Refbacks

  • There are currently no refbacks.


© 2017 Universidad de Costa Rica. Para ver más detalles sobre la distribución de los artículos en este sitio visite el aviso legal. Este sitio es desarrollado por UCRIndex y Open Journal Systems. ¿Desea cosechar nuestros metadatos? dirección OAI-PMH: https://revistas.ucr.ac.cr/index.php/index/oai