Abstract
The Guarianthe skinneri orchid is included in NOM-059-ECOL-2010, Mexico standard as an endangered species. In order to study PGPR (promoting growth plant rhizobacteria) from this orchid, 10 roots were collected from different plants to isolate bacteria associated with the roots, which were analyzed by in vitro tests such as: production of AIA, nitrogen fixation, interaction with the mycorrhizal fungus Thanatephorus sp. strain RG26 and phosphate solubilization. We obtain 71 bacterial isolates, 10 strains of them were characterized by sequencing with the 16d rDNA marker identifying six bacteria: Sphingomonas sp. Sinorhizobium sp. Bacillus sp. Nocardia cerradoensis, Bacillus megaterium and Burkholderia phytofirmans. We observed that the bacterium Sinorhizobium sp. produced a greater amount of AIA (69.189 μg/ml) and Bacillus sp. performed greater acetylene reduction (10.251 nmol cultivo/96h). In the interactions of the bacteria and the fungus RG26, four categories were presented (extremely positive, positive, antagonism 50-50 and inhibition). In relation to the solubilization of phosphate, Burkholderia phytofirmans presented higher IS after 48 and 96 hr with an IS of 3.11 and 3.48, respectively. The results indicate that Bacillus sp. it could have the best characteristics to promote the development of the G. skinneri orchid by inoculating seeds and seedlings.
References
Ahemad, M., & Kibret, M. (2014). Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective. Journal of King Saud University - Science, 26(1), 1-20. DOI: 10.1016/j.jksus.2013.05.001
Álvarez-López, C., Osorio-Vega, W., Díez-Gómez, M., & Marín-Montoya, M. (2014). Caracterización bioquímica de microorganismos rizosféricos de plantas de vainilla con potencial como biofertilizantes. Agronomía Mesoamericana, 25(2), 225-241. DOI: 10.15517/am.v25i2.15426
Bechtel, H., Cribb, P., & Launert, E. (1992). The manual of cultivated orchid species (3rd Ed.). Massachusetts, U.S.A.: MIT Press.
Bertolini, V., Damon, A., & Ibarra-Cerdeña, C. (2016). Atlas de las orquídeas del Soconusco: modelos digitales de nichos ambientales entre Centro y Sudamérica. Tapachula, México: El Colegio de la Frontera Sur.
Bertolini, V., Damon, A., & Rojas-Veláquez, A. (2011). Symbiotic germination of three species of epiphytic orchids susceptible to genetic erosion, from Soconusco (Chiapas, Mexico). European Journal of Environmental Sciences, 1(2), 60-68.
Bogarín, D., & Pupulin, F. (2007). Las orquídeas del Parque Nacional Barra Honda, Guanacaste, Costa Rica. Lankesteriana, 7(1-2), 446-449.
Carrillo, A., Puente, M., Castellanos, T., & Bashan, Y. (1998). Aplicaciones biotecnológicas de Ecología Microbiana. Manual de laboratorio. Bogotá, Colombia: Pontificia Universidad Javeriana y Centro de Investigaciones Biológicas del Noroeste.
Chakravorty, S., Helb, D., Burday, M., Connell, N., & Alland, D. (2007). A detailed analysis of 16S ribosomal RNA gene segments for the diagnosis of pathogenic bacteria. Journal of Microbiological Methods, 69(2), 330-339. DOI: 10.1016/j.mimet.2007.02.005
Corrales-Ramírez, L., Arévalo-Galvez, Z., & Moreno-Burbano, V. (2014). Solubilización de fosfatos: una función microbiana importante en el desarrollo vegetal. Nova, 12(21), 67-79.
Corrales-Ramírez, L., Sánchez-Leal, L., Arévao-Galvez, Z., & Moreno-Burbano, V. (2014). Bacillus: género bacteriano que demuestra ser un importante solubilizador de fosfato. Nova, 12(21), 165-178.
Dakora, F., & Phillips, D. (2002). Root exudates as mediators of mineral acquisition in low-nutrient environments. Plant and Soil, 245(1), 35-47. DOI: 10.1023/A:1020809400075
Damon, A., & Colín-Martínez, H. (2004). El estado actual de las poblaciones de orquídeas en la región del Soconusco, Chiapas. Amaranto. El Boletín de La Asociación de Jardines Botánicos de México, (3), 2-16.
Dressler, L., & Higgins, E. (2003). Guarianthe, a generic name for the “Cattleya” skinneri complex. Lankesteriana, 7, 37-38.
Faria, D., Dias, A., Melo, I., & Carvalho-Costa, F. (2013). Endophytic bacteria isolated from orchid and their potential to promote plant growth. World Journal of Microbiology and Biotechnology, 29, 217-221. DOI: 10.1007/s11274-012-1173-4
Franche, C., Lindström, K., & Elmerich, C. (2009). Nitrogen-fixing bacteria associated with leguminous and non-leguminous plants. Plant and Soil, 321(1-2), 35-59. DOI: 10.1007/s11104-008-9833-8
Galdiano-Júnior, R., Pedrinho, E., Castellane, T., & Lemos, E. (2011). Auxin-producing bacteria isolated from the roots of Cattleya walkeriana, an endangered Brazilian orchid, and their role in acclimatization. Revista Brasileira de Ciência Do Solo, 35(3), 729-737. DOI: 10.1590/S0100-06832011000300008
Gkarmiri, K., Finlay, R., Alström, S., Thomas, E., Cubeta, M., & Högberg, N. (2015). Transcriptomic changes in the plant pathogenic fungus Rhizoctonia solani AG-3 in response to the antagonistic bacteria Serratia proteamaculans and Serratia plymuthica. BMC Genomics, 16, 630. DOI: 10.1186/s12864-015-1758-z
Glick, B. (2012). Plant Growth-Promoting Bacteria: Mechanisms and Applications. Scientifica, 2012, 1-15. DOI: 10.6064/2012/963401
Gordon, S., & Weber, R. (1951). Colorimetric Estimation of Indoleacetic Acid. Plant Physiology, 26(1), 192-195.
Hardy, R., Holsten, R., Jackson, E., & Burns, R. (1968). The Acetylene-Ethylene Assay for N2 Fixation: Laboratory and Field Evaluation. Plant Physiology, 43, 1185-1207. DOI: 10.1104/pp.43.8.1185
Hartmann, A., Schmid, M., van Tuinen, D., & Berg, G. (2009). Plant-driven selection of microbes. Plant and Soil, 321(1-2), 235-257. DOI: 10.1007/s11104-008-9814-y
Jones, K., Kobayashi, H., Davies, B., Taga, M., & Walker, G. (2007). How rhizobial symbionts invade plants: the Sinorhizobium-Medicago model. Nature Reviews. Microbiology, 5(8), 619-33. DOI: 10.1038/nrmicro1705
Kimura, M. (1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16(2), 111-120. DOI: 10.1007/BF01731581
King, E., Ward, W., & Raney, D. (1954). Two simple media for the desmostration of pyocyanin and fluorescin. Journal of Laboratory and Clinical Medicine, 4(2), 301-307.
Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Molecular Biology and Evolution, 33(7), 1870-1874. DOI: 10.1093/molbev/msw054
Kumar, V., & Narula, N. (1999). Solubilization of inorganic phosphates and growth emergence of wheat as affected by Azotobacter chroococcum mutants. Biology and Fertility of Soils, 28(3), 301-305. DOI: 10.1007/s003740050497
Li, O., Xiao, R., Sun, L., Guan, C., Kong, D., & Hu, X. (2017). Bacterial and diazotrophic diversities of endophytes in Dendrobium catenatum determined through barcoded pyrosequencing. PLoS ONE, 12(9), 1-21. DOI: 10.1371/journal.pone.0184717
López-Chávez, M., Guillén-Navarro, K., Bertolini, V., Encarnación, S., Hernández-Ortiz, M., Sánchez-Moreno, I., & Damon, A. (2016). Proteomic and morphometric study of the in vitro interaction between Oncidium sphacelatum Lindl. (Orchidaceae) and Thanatephorus sp. RG26 (Ceratobasidiaceae). Mycorrhiza, 26(5), 1-13. DOI: 10.1007/s00572-015-0676-x
Macedo, C., Martínez, H., & Lara, R. (2012). Rizobacterias aisladas del trópico húmedo con actividad antagónica sobre Colletotrichum gloeosporioides, evaluación cuantitativa e identificación molecular. Revista Mexicana de Fitopatología, 30(1), 11-30.
Mantilla-Cardenas, M. (2007). Evaluación de la acción de un bioinoculante sobre un cultivo de crisantemo (Chrysanthemum morifolium var. yoko ono) en período de enraizamiento (Tesis de Licenciatura). Pontificia Universidad Javeriana, Colombia.
Paredes-Mendoza, M., & Espinosa-Victoria, D. (2009). Organic Acids Produced by Phosphate Solubilizing Rhizobacteria: A Critical Review. Terra Latinoamericana, 28(1), 61-70.
Prashar, P., Kapoor, N., & Sachdeva, S. (2014). Rhizosphere: Its structure, bacterial diversity and significance. Reviews in Environmental Science and Biotechnology, 13(1), 63-77. DOI: 10.1007/s11157-013-9317-z
R Core Team. (2013). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Retrieved from https://www.R-Project.org
Rennie, R. (1981). A single medium for the isolation of acetylene-reducing (dinitrogen-fixing) bacteria from soils. Canadian Journal of Microbiology, 27, 8-14. Retrieved from http://www.nrcresearchpress.com/DOI/abs/10.1139/m81-002
Rodríguez, H., Fraga, R., Gonzalez, T., & Bashan, Y. (2006). Genetics of phosphate solubilization and its potential applications for improving plant growth-promoting bacteria. Plant and Soil, 287(1-2), 15-21. DOI: 10.1007/s11104-006-9056-9
Semarnat. (2010). Norma oficial Mexicana NOM-059-SEMARNAT-2010. Diario Oficial, 78.
Solano-Gómez, R., Damon, A., Cruz-Lustre, G., Jiménez-Bautista, L., Avendaño-Vázquez, S., Bertolini, V., Rivera-García, R., & Cruz-García, G. (2016). Diversity and distribution of the orchids of the Tacaná-Boquerón region, Chiapas, Mexico. Botanical Sciences, 94(3), 625-656. DOI: 10.17129/botsci.589
Sundara-Rao, W., & Sinha, M. (1963). Phosphate dissolving microorganisms in the soil and rhizosphere. The Indian Journal of Agricultural Sciences, 33(4), 272-278. Retrieved from https://scholar.google.es/scholar?q=related:MYpFGIALEgkJ:scholar.google.com/&hl=es&as_sdt=0,5#0
Tsavkelova, E., Cherdyntseva, T., & Netrusov, A. (2005). Auxin production by bacteria associated with orchid roots. Microbiology, 74(1), 46-53. DOI: 10.1007/s11021-005-0027-6
Tsavkelova, E., Cherdyntseva, T., Botina, S., & Netrusov, A. (2007a). Bacteria associated with orchid roots and microbial production of auxin. Microbiological Research, 162, 69-76. http://DOI.org/10.1016/j.micres.2006.07.014
Tsavkelova, E., Cherdyntseva, T., Klimova, S., Shestakov, A., Botina, S., & Netrusov, A. (2007b). Orchid-associated bacteria produce indole-3-acetic acid, promote seed germination, and increase their microbial yield in response to exogenous auxin. Archives of Microbiology, 188, 655-664. http://DOI.org/10.1007/s00203-007-0286-x
Tsavkelova, E., Cherdyntseva, T., Lobakova, E., Kolomeitseva, G., & Netrusov, A. (2001). Microbiota of the Orchid Rhizoplane. Microbiology, 70(4), 492-497. DOI: 10.1023/A:1010402715376
Tsavkelova, E., Lobakova, E., Kolomeitseva, G., Cherdyntseva, T., & Netrusov, A. (2003). Associative Cyanobacteria Isolated from the roots of epiphytic orchids. Microbiology, 72(1), 92-97. DOI: 10.1023/A:1022238309083
Vargas-Zamora, J., & Gómez-Laurito, J. (2005). Algunas plantas en billetes, boletos de café y cafetales de Costa Rica (1836-2004). Lankesteriana, 5(2), 141-158.
Vazquez, P., Holguin, G., Puente, M., Lopez-Cortes, A., & Bashan, Y. (2000). Phosphate-solubilizing microorganisms associated with the rhizosphere of mangroves in a semiarid coastal lagoon. Biology and Fertility of Soils, 30(5-6), 460-468. DOI: 10.1007/s003740050024
Velázquez-Becerra, C., Macías-Rodríguez, L., López-Bucio, J., Flores-Cortez, I., Santoyo, G., Hernández-Soberano, C., & Valencia-Cantero, E. (2013). The rhizobacterium Arthrobacter agilis produces dimethylhexadecylamine, a compound that inhibits growth of phytopathogenic fungi in vitro. Protoplasma, 250(6), 1251-1262. DOI: 10.1007/s00709-013-0506-y
Villegas-Espinoza, J., Rueda-Puente, E., Murillo-Amador, B., Puente, M., Ruiz-Espinoza, H., Zamora-Salgado, S., & Beltran, F. (2014). Bacterias promotoras de crecimiento de plantas autóctonas y su efecto en Prosopis chilensis (Molina) Stunz. Revista Mexicana de Ciencias Agrícolas, 5(6), 1041-1053.
Wang, X., Yam, T., Meng, Q., Zhu, J., Zhang, P., Wu, H., … Song, X. (2016). The dual inoculation of endophytic fungi and bacteria promotes seedlings growth in Dendrobium catenatum (Orchidaceae) under in vitro culture conditions. Plant Cell, Tissue and Organ Culture (PCTOC), (1). DOI: 10.1007/s11240-016-1021-6
Weisburg, W., Barns, S., Pelletier, D., & Lane, D. (1991). 16S Ribosomal DNA Amplification for Phylogenetic Study. Journal of Biotechnology, 173(2), 697-703.
Yang, S., Zhang, X., Cao, Z., Zhao, K., Wang, S., Chen, M., & Hu, X. (2014). Growth-promoting Sphingomonas paucimobilis ZJSH1 associated with Dendrobium officinale through phytohormone production and nitrogen fixation. Microbial Biotechnology, 7(6), 611-620. DOI: 10.1111/1751-7915.12148
Yoder, J., Zettler, L., & Stewart, S. (2000). Water requirements of terrestrial and epiphytic orchid seeds and seedlings, and evidence for water uptake by means of mycotrophy. Plant Science, 156(2), 145-150.
Zambrano-Ramos, E., Salgado-Jiménez, T., & Hernández-Tapia, A. (2007). Estudio de bacterias asociadas orquídeas (Orchidaceae). Lankesteriana, 7(1-2), 322-325. DOI: 10.15517/lank.v7i1-2.19556
Comments
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright (c) 2018 Revista de Biología Tropical