https://revistas.ucr.ac.cr/index.php/rbtRevista de Biología Tropical ISSN Impreso: 0034-7744 ISSN electrónico: 2215-2075

Characterization of plant growth promoting bacteria from roots of Guarianthe skinneri (Orchidaceae).

Trinidad Aguilar Diaz, Vincenzo Bertolini



DOI: https://doi.org/10.15517/rbt.v66i3.30638

Abstract


In the state of Chiapas, Mexico, is located the region El Soconusco, which host a great diversity of orchids, one of them is the orchid Guarianthe skinneri (Bateman) Dressler & W.E. Higgins, much appreciated for its flowers, is currently in the Mexican norm NOM-059-ECOL-2010 as a threatened species. Part of the bacterial diversity associated with the roots of this species was determined to identify and select plant growth promoting bacteria (BPCV). Young roots with a healthy phytosanitary feature were collected from 10 plants from the Soconusco Regional Botanical Garden, Tuzantán, Chiapas. Bacteria rhizoplane and endophyte were isolated for macroscopically and microscopically, under in vitro conditions such as: indoleacetic acid production (AIA), nitrogen fixation, interaction with the mycorrhizal fungus Thanatephorus sp. RG26 and phosphate solubilization. The total of the bacterial isolates was 71 (33 from rhizoplane and 38 endophytes). With respect to the production of AIA, 10 isolates presented higher AIA production and were selected for subsequent analyzes, thus determining a strain of Sinorhizobium sp., as the largest AIA producer (69.18 ± 0.97 μg/ml); the nitrogen fixation analysis show that bacterium Bacillus sp. aim an higher concentration of ethylene (10.251 ± 7.98 nmol). Concerning the interaction results with the RG26 orchid micorrizical fungus, four categories of interaction were established in the study (highly positive, positive, 50-50 antagonism and totally inhibitory). In relation to phosphate solubilization, Burkholderia phytofirmans showed highest solubilization index (IS) at 48 and 96h (3.11 ± 0.11 and 3.48 ± 0.03). Six strains were identified by sequencing with the 16s rDNA marker: Sphingomonas sp., Sinorhizobium sp., Bacillus sp., Nocardia cerradoensis, Bacillus megaterium and Burkholderia phytofirmans. The bacterium Bacillus sp., was the best candidate for inoculation of seeds and seedlings of the G. skinneri orchid, because of his high preformances The evidences open new approaches in the research on relationship orchid-bacterial-mycorrhizal fungus, offering new paths for the conservation of this germplasm in the Soconusco region.

Keywords


rhizoplane, antagonism, indoleacetic acid, phosphate solubilization, nitrogen fixation, bacteria

References


Ahemad, M., & Kibret, M. (2014). Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective. Journal of King Saud University - Science, 26(1), 1–20. http://doi.org/10.1016/j.jksus.2013.05.001

Álvarez-López, C., Osorio-Vega, W., Díez-Gómez, M. C., & Marín-Montoya, M. (2014). Caracterización bioquímica de microorganismos rizosféricos de plantas de vainilla con potencial como biofertilizantes. Agronomía Mesoamericana, 25(2), 225–241. http://doi.org/10.15517/am.v25i2.15426

Álvarez, C., Marín, M., Diez, M., & Osorio, N. (2012). Molecular identification of microorganisms associated to the rhizosphere of vanilla and their potential use as biofertilizers. Acta Horticulturae, 964, 107–114. http://doi.org/10.17660/ActaHortic.2012.964.13

Bechtel, H., Cribb, P., & Launert, E. (1992). The manual of cultivated orchid species. 3rd Ed. The MIT Press, Cambridge, Massachusetts, U.S.A. MIT Press.

Bogarín, D., & Pupulin, F. (2007). Las orquídeas del Parque Nacional Barra Honda, Guanacaste, Costa Rica. Lankesteriana, 7(1–2), 446–449.

Carrillo, A., Puente, M., Castellanos, T., & Bashan, Y. (1998). Aplicaciones biotecnológicas de Ecología Microbiana In: Manual de laboratorio. (Eds. Pontifica Universidad Javeriana, Santa Fé de Bogotá, Colombia Y Centro de Investigaciones Biológicas Del Noroeste, S.C.). La Paz, B.C.S. México, 51.

Chakravorty, S., Helb, D., Burday, M., Connell, N., & Alland, D. (2007). A detailed analysis of 16S ribosomal RNA gene segments for the diagnosis of pathogenic bacteria. Journal of Microbiological Methods, 69(2), 330–339. http://doi.org/10.1016/j.mimet.2007.02.005

Córdova-Bautista, Y., Rivera-Cruz, M., Ferrera-Cerrato, R., Obrador-Olán, J., & Córdova-Ávalos, V. (2009). Detección de bacterias benéficas en suelo con banano (Musa AAA Simmonds) cultivar “gran enano” y su potencial para integrar un biofertilizante. Universidad Y Ciencia, 25(3), 253–265.

Corrales-Ramírez, L., Arévalo-Galvez, Z., & Moreno-Burbano, V. (2014). Solubilización de fosfatos: una función microbiana importante en el desarrollo vegetal. Nova, 12(21), 67–79.

Corrales-Ramírez, L., Sánchez-Leal, L., Arévao-Galvez, Z., & Moreno-Burbano, V. (2014). Bacillus: género bacteriano que demuestra ser un importante solubilizador de fosfato. Nova, 12(21), 165–178.

Dakora, F. D., & Phillips, D. A. (2002). Root exudates as mediators of mineral acquisition in low-nutrient environments. Plant and Soil, 245(1), 35–47. http://doi.org/10.1023/A:1020809400075

Damon, A., & Colín-Martínez, H. (2004). El estado actual de las poblaciones de orquídeas en la región del Soconusco, Chiapas. Amaranto. El Boletín de La Asociación de Jardines Botánicos de México, (3), 2–16.

Dressler, L., & Higgins, E. (2003). Guarianthe, a generic name for the “Cattleya” skinneri complex. Lankesteriana, 7, 37–38.

Faria, D. ., Dias, A. C. ., Melo, I. ., & Carvalho-Costa, F. . (2013). Endophytic bacteria isolated from orchid and their potential to promote plant growth. World J Microbiol Biotechnol, 29, 217–221. http://doi.org/10.1007/s11274-012-1173-4

Franche, C., Lindström, K., & Elmerich, C. (2009). Nitrogen-fixing bacteria associated with leguminous and non-leguminous plants. Plant and Soil, 321(1–2), 35–59. http://doi.org/10.1007/s11104-008-9833-8

Galdiano-Júnior, R., Pedrinho, E., Castellane, T., & Lemos, E. (2011). Auxin-producing bacteria isolated from the roots of Cattleya walkeriana, an endangered Brazilian orchid, and their role in acclimatization. Revista Brasileira de Ciência Do Solo, 35(3), 729–737. http://doi.org/10.1590/S0100-06832011000300008

Gkarmiri, K., Finlay, R. D., Alström, S., Thomas, E., Cubeta, M. a, & Högberg, N. (2015). Transcriptomic changes in the plant pathogenic fungus Rhizoctonia solani AG-3 in response to the antagonistic bacteria Serratia proteamaculans and Serratia plymuthica. BMC Genomics, 16, 630. http://doi.org/10.1186/s12864-015-1758-z

Glick, B. R. (2012). Plant Growth-Promoting Bacteria: Mechanisms and Applications. Scientifica, 2012, 1–15. http://doi.org/10.6064/2012/963401

Gordon, S. ., & Weber, R. . (1951). Colorimetric Estimation of Indoleacetic Acid. Plant Physiology, 26(1), 192–195.

Hardy, R., Holsten, R., Jackson, E., & Burns, R. (1968). The Acetylene-Ethylene Assay for N2 Fixation: Laboratory and Field Evaluation. Plant Physiology, 43, 1185–1207. http://doi.org/10.1104/pp.43.8.1185

Hartmann, A., Schmid, M., van Tuinen, D., & Berg, G. (2009). Plant-driven selection of microbes. Plant and Soil, 321(1–2), 235–257. http://doi.org/10.1007/s11104-008-9814-y

Jones, K. M., Kobayashi, H., Davies, B. W., Taga, M. E., & Walker, G. C. (2007). How rhizobial symbionts invade plants: the Sinorhizobium-Medicago model. Nature Reviews. Microbiology, 5(8), 619–33. http://doi.org/10.1038/nrmicro1705

King, E., Ward, W., & Raney, D. (1954). Two simple media for the desmostration of pyocyanin and fluorescin. Journal of Laboratory and Clinical Medicine, 4(2), 301–307.

Kumar, V., & Narula, N. (1999). Solubilization of inorganic phosphates and growth emergence of wheat as affected by Azotobacter chroococcum mutants. Biology and Fertility of Soils, 28(3), 301–305. http://doi.org/10.1007/s003740050497

López-Chávez, M. Y., Guillén-Navarro, K., Bertolini, V., Encarnación, S., Hernández-Ortiz, M., Sánchez-Moreno, I., & Damon, A. (2016). Proteomic and morphometric study of the in vitro interaction between Oncidium sphacelatum Lindl. (Orchidaceae) and Thanatephorus sp. RG26 (Ceratobasidiaceae). Mycorrhiza, 26(July), 1–13. http://doi.org/10.1007/s00572-015-0676-x

Macedo, C., Martínez, H., & Lara, R. (2012). Rizobacterias aisladas del trópico húmedo con actividad antagónica sobre Colletotrichum gloeosporioides, evaluación cuantitativa e identificación molecular. Revista Mexicana de Fitopatología, 30(1), 11–30.

Mantilla-Cardenas, M. (2007). Evaluación de la acción de un bioinoculante sobre un cultivo de crisantemo (Chrysanthemum morifolium var. yoko ono) en período de enraizamiento. Pontificia Universidad Javeriana facultad de ciencias, carrera de microbiología agrícola y veterinaria Bogotá D.C. Pontificia Universidad Javeriana.

Paredes-Mendoza, M., & Espinosa-Victoria, D. (2009). Organic Acids Produced by Phosphate Solubilizing Rhizobacteria : A Critical Review. Terra Latinoamericana, 28(1), 61–70.

Prashar, P., Kapoor, N., & Sachdeva, S. (2014). Rhizosphere: Its structure, bacterial diversity and significance. Reviews in Environmental Science and Biotechnology, 13(1), 63–77. http://doi.org/10.1007/s11157-013-9317-z

Rennie, R. (1981). A single medium for the isolation of acetylene-reducing (dinitrogen-fixing) bacteria from soils. Canadian Journal of Microbiology, 27, 8–14. Retrieved from http://www.nrcresearchpress.com/doi/abs/10.1139/m81-002

Rodríguez, H., Fraga, R., Gonzalez, T., & Bashan, Y. (2006). Genetics of phosphate solubilization and its potential applications for improving plant growth-promoting bacteria. Plant and Soil, 287(1–2), 15–21. http://doi.org/10.1007/s11104-006-9056-9

Semarnat. Secretaría de Medio Ambiente y Recursos Naturales. (2010). Norma oficial Mexicana NOM-059-SEMARNAT-2010. Diario Oficial, 78.

Solano-Gómez, R., Damon, A., Cruz-Lustre, G., Jiménez-Bautista, L., Avendaño-Vázquez, S., Bertolini, V., … Cruz-García, G. (2016). Diversity and distribution of the orchids of the Tacaná-Boquerón region, Chiapas, Mexico. Botanical Sciences, 94(3), 625. http://doi.org/10.17129/botsci.589

Sundara-Rao, W., & Sinha, M. (1963). Phosphate dissolving microorganisms in the soil and rhizosphere. Indian J. Agric. Sci, 33(4), 272–278.

Tsavkelova, E., Cherdyntseva, T., Botina, S., & Netrusov, A. (2007). Bacteria associated with orchid roots and microbial production of auxin. Microbiological Research, 162, 69–76. http://doi.org/10.1016/j.micres.2006.07.014

Tsavkelova, E., Cherdyntseva, T., Klimova, S., Shestakov, A., Botina, S., & Netrusov, A. (2007). Orchid-associated bacteria produce indole-3-acetic acid, promote seed germination, and increase their microbial yield in response to exogenous auxin. Arch of Microbiol, 188, 655–664. http://doi.org/10.1007/s00203-007-0286-x

Tsavkelova, E., Cherdyntseva, T., Lobakova, E., Kolomeitseva, G., & Netrusov, A. (2001). Microbiota of the Orchid Rhizoplane. Microbiology, 70(4), 492–497. http://doi.org/10.1023/A:1010402715376

Tsavkelova, E., Cherdyntseva, T., & Netrusov, A. (2005). Auxin production by bacteria associated with orchid roots. Microbiology, 74(1), 46–53. http://doi.org/10.1007/s11021-005-0027-6

Tsavkelova, E., Lobakova, E., Kolomeitseva, G., Cherdyntseva, T., & Netrusov, A. (2003). Associative Cyanobacteria Isolated from the roots of epiphytic orchids. Microbiology, 72(1), 92–97. http://doi.org/10.1023/A:1022238309083

Vargas-Zamora, J. ., & Gómez-Laurito, J. (2005). Algunas plantas en billetes, boletos de café y cafetales de Costa Rica (1836-2004). Lankesteriana, 5(2), 141–158.

Vazquez, P., Holguin, G., Puente, M. ., Lopez-Cortes, A., & Bashan, Y. (2000). Phosphate-solubilizing microorganisms associated with the rhizosphere of mangroves in a semiarid coastal lagoon. Biology and Fertility of Soils, 30(5–6), 460–468. http://doi.org/10.1007/s003740050024

Velázquez-Becerra, C., Macías-Rodríguez, L. I., López-Bucio, J., Flores-Cortez, I., Santoyo, G., Hernández-Soberano, C., & Valencia-Cantero, E. (2013). The rhizobacterium Arthrobacter agilis produces dimethylhexadecylamine, a compound that inhibits growth of phytopathogenic fungi in vitro. Protoplasma, 250(6), 1251–1262. http://doi.org/10.1007/s00709-013-0506-y

Villegas-Espinoza, J. ., Rueda-Puente, E. ., Murillo-Amador, B., Puente, M. ., Ruiz-Espinoza, H., Zamora-Salgado, S., & Beltran, F. . (2014). Bacterias promotoras de crecimiento de plantas autóctonas y su efecto en Prosopis chilensis (Molina) Stunz. Revista Mexicana de Ciencias Agrícolas, 5(6), 1041–1053.

Wang, X., Yam, T. W., Meng, Q., Zhu, J., Zhang, P., Wu, H., … Song, X. (2016). The dual inoculation of endophytic fungi and bacteria promotes seedlings growth in Dendrobium catenatum (Orchidaceae) under in vitro culture conditions. Plant Cell, Tissue and Organ Culture (PCTOC), (1). http://doi.org/10.1007/s11240-016-1021-6

Weisburg, W. G., Barns, S. M., Pelletier, D. A., & Lane, D. J. (1991). 16S Ribosomal DNA Amplification for Phylogenetic Study. Journal of Biotechnology, 173(2), 697–703.

Yoder, J. A., Zettler, L. W., & Stewart, S. L. (2000). Water requirements of terrestrial and epiphytic orchid seeds and seedlings, and evidence for water uptake by means of mycotrophy. Plant Science, 156(2), 145–150.

Zambrano-Ramos, E., Salgado-Jiménez, T., & Hernández-Tapia, A. (2007). Estudio de bacterias asociadas orquídeas (Orchidaceae). Lankesteriana, 7(1–2), 322–325. http://doi.org/10.15517/lank.v7i1-2.19556


Refbacks

  • There are currently no refbacks.


© 2017 Universidad de Costa Rica. Para ver más detalles sobre la distribución de los artículos en este sitio visite el aviso legal. Este sitio es desarrollado por UCRIndex y Open Journal Systems. ¿Desea cosechar nuestros metadatos? dirección OAI-PMH: https://revistas.ucr.ac.cr/index.php/index/oai