https://revistas.ucr.ac.cr/index.php/rbtRevista de Biología Tropical ISSN Impreso: 0034-7744 ISSN electrónico: 2215-2075

Determination of optimal prey for rearing tropical gar Atractosteus tropicus (Lepisosteiformes: Lepisosteidae)

Luis H. Escalera-Vázquez, Omar Domínguez-Domínguez, Eduardo Molina-Domínguez, S.S.S. Sarma, S. Nandini



DOI: https://doi.org/10.15517/rbt.v66i3.30670

Abstract


Larval feeding studies of both ornamental and consumable fish species are important for formulating successful management, and culture strategies for conservation purposes. In the present study, we evaluated prey selectivity for the tropical gar Atractosteus tropicus in the larval stage (first 8 weeks) using the zooplankton Artemia fransiscana, Daphnia pulex and Moina macrocopa as prey following the hypothesis that prey selection of the fish species is related not only to prey species preferences but to the difference in prey densities present in the environment. Functional responses were tested at prey densities of 0.2, 0.5, 1.0, 2.0, 4.0 and 8.0 ind. mL-1 and analyzed using Manly’s α. For prey selectivity, we used the three zooplankton species at three different densities. In these two experiments the fish larvae were allowed to feed for 45 min. To quantify feeding behavior (encounters, attacks, captures, ingestions, rejections) we used a density of 1 ind. mL-1 using each prey species based on 10 minutes of direct observation. Our results showed a functional response Type II for A. tropicus preying mostly on A. franciscana and M. macrocopa. The Manly’s α index showed that M. macrocopa and A. franciscana are the most preys selected. The values for encounters for the three prey species were relatively constant during the eight weeks. Encounter values for the cladocerans were low in comparison to A. franciscana; however, high success in capture and ingestion was observed for all prey species used. Our results from the functional response experiments supports the hypothesis that A. tropicus is an active predator presenting a functional response of a carnivorous fish and the shift in prey selection suggests that even at low prey availability, A. tropicus is able to manipulate and feed on zooplankton of wide range in size. Also, according to our results, we suggest the use of a mix of A. franciscana and M. macrocopa to feed A. tropicus in culture systems in concentrations ≈ 2 ind. mL-1 during the first 3 weeks of age and then shift to M. macrocopa from the 4 week. Our results, in conjunction with studies on the survivorship of the juveniles would aid in conservation efforts and improve the production of gars in aquaculture.

Keywords


functional response, planktonic prey, prey selection, tropical gar

Full Text:

PDF HTML

References


Alam, M. J., Ang, K. J., & Chea, S. H. (1993). Use of Moina micrura (Kurz) as an Artemia substitute in the production of Macrobrachium rosenbergii (de Man) post-larvae. Aquaculture, 109, 337-349.

Anonymous (1985). Methods of measuring the acute toxicity of effluents of freshwater and marine organisms. U.S. Environment Protection Agency EPA/600/4- 85/0 13.

Atencio-García, V. J., & Zaniboni, F. E. (2006). El canibalismo en la larvicultura de peces. Rev. MVZ Córdoba, 11, 9-19.

Barata, C., Varo, I., Navarro, J. C., Arun, S., & Porte, C. (2005), Antioxidant enzyme activities and lipid peroxidation in the freshwater cladoceran Daphnia magna exposed to redox cycling compounds. Comparative Biochemistry and Physiology, 140, 175-186.

Barros, H. P., & Valenti, W. C. (2003). Ingestion rates of Artemia nauplii for different larval stages of Macrobrachium rosenbergii. Aquaculture, 217, 223-233.

Bogatova, I. B., Shcherbina, M. A., Ovinnikova, B. B., & Tagirova, N. A. (1971). Chemical composition of some planktonic animals under different conditions of growing. Gidrobiologiceski Zurnal, 7, 54-57.

Bossuyt, E., & Sorgeloos, P. (1979). Technological aspects of the batch culturing of Artemia in high densities. In G. Persoone, P. Sorgeloos, O. Roels, & E. Jaspers (Eds.), The Brine Shrimp Artemia. Vol. 3. Ecology, Culturing, Use in Aquaculture (pp. 133- 152). Wetteren, Belgium: Universa Press.

Borowitzka, M. A., & Borowitzka, L. J. (1988). Micro-Algal Biotechnology. London, UK: Cambridge University.

Case T. J. (1999). An Illustrated Guide toTheoretical Ecology. New York, USA: Oxford University Press.

Colgan, P. W., Brown, J. A., & Orsatti, S. D. (1986). Role of diet and experience in the development of foraging behavior in largemouth bass (Micropterus salmoides). Journal of Fish Biololy, 28, 161-170.

Comabella, Y., Hurtado, A., & García-Galano, T. (2010). Ontogenetic Changes in the Morphology and Morphometry of Cuban Gar (Atractosteus tristoechus). Zoological Science, 27, 931-938.

Córdova-Tapia, F., Contreras, M., & Zambrano, L. (2014). Trophic niche overlap between native and non-native fishes. Hidrobiologia, 746, 291-901.

Cunha, I., & Planas, M. (1999). Optimal prey size for early turbot larvae (Scophthalmus maximus L.) based on mouth and ingested prey size. Aquaculture, 175, 103-110.

Dodson, S. I., & Frey, D. G. (2001). Cladocera and other Branchiopoda. In J. H. Thorp & A.P. Covich (Eds.), Ecology and classification of North American freshwater invertebrates (pp. 849-913). San Francisco, CA: Academic Press.

Domínguez-Domínguez, O., Nandini, S., & Sarma, S. S. S. (2002). Larval feeding behaviour of the endangered fish golden bubblebee goodeid, Allotoca dugesi: implications for conservation of an endangered species. Fisheries Management and Ecology, 9, 285-291.

Domínguez-Domínguez, O., Pérez-Ponce de León, G., Martínez-Meyer, E., & Zambrano, L. (2006). Using Ecological-Niche Modeling as a Conservation Tool for Freshwater Species: Live-Bearing Fishes in Central Mexico. Conservation Biology, 20, 1730-1739.

Dutta, H. M. (1996). A composite approach for evaluation of the effects of pesticides on fish (pp. 250-271). In J. S. D. Munshi & H. M. Dutta (Eds.), Fish Morphology. New York, USA: Science Publishers Inc.

Gallardo-Alanis, J., Sarma, S. S. S. & Nandini, S. (2009). Prey Selectivity and Functional Response by Larval Red-Eyed Tetra Moenkhausia Sanctaefilomenae (Steindachner, 1907) (Characiformes: Characidae). Brazilian Archives of Biology and Technology, 52, 1209-1216.

Gerking, S. D. (1994). Feeding Ecology of Fish. San Diego, USA: Academic Press.

Greene, C. H. (1983). Selective predation in freshwater zooplankton communities. Internationale Revue der gesamten Hydrobiologie und Hydrographie, 68, 297-315.

Holling, C. S. (1966). The functional response of invertebrate predators to prey density. Memoirs of the Entomological Society of Canada, 48, 1-86.

Jeschke, J. M., Kopp, M., & Tollrian, R. (2002). Predator functional responses: discriminating between handling and digesting prey. Ecological Monographs, 72, 95-112.

Jhingran, V. G. (1991). Fish and Fisheries of India, revised and anlarged. Delhi, India: Hindustan Publishing Corporation.

Juanes, F. (1994). What determines prey size selectivity in piscivorous fishes?. In D. J. Stouder, K. L. Fresh, & R. J. Feller (Eds.), Theory and application in fish feeding ecology (pp. 79-100). USA: University of South Carolina Press.

Katavic, I., Jug-Dujakovic, J., & Glamuzina, B. (1989). Cannibalism as a factor affecting the survival of intensively cultured sea bass (Dicentrarchus labrax) fingerlings. Aquaculture, 77, 135-143.

Krebs, J. R., & Davies, N. B. (1993). Behavioural Ecology. An Evolutionary Approach. London, UK: Wiley-Blackwell.

Khadka, R. B., & Rao, T. R. (1986). Prey size selection by common carp (Cyprinus carpio var. communis) larvae in relation to age and prey density. Aquaculture, 88, 69-74.

Lampert, W., & Sommer, U. (1997). Limnoecology. The ecology of lakes and streams. New York, USA: Oxford University Press.

Laurel, B. J., Brown, J. A., & Anderson, R. (2001). Behaviour, growth and survival of redfish larvae in relation to prey availability. Journal of Fish Biology, 59, 884-901.

Lazarro, X. (1987). A review of planktivorous fishes: their evolutions, feeding behaviours, selectivities and impacts. Hydrobiologia, 146, 97-167.

Lubzens, E. (1987). Raising rotifers for use in aquaculture. Hydrobiologia, 147, 245-255.

Márquez-Couturier, G., Álvarez, C., Contreras, W., Hernández, U., Hernández, A. Mendoza R., Aguilera, C., García, T., Civera, R., & Goytortua, E. (2006). Avances en la alimentación y nutrición de pejelagarto Atractosteus tropicus. In Memorias del VIII Simposium Internacional de Nutrición Acuícola (pp. 446–523). Monterrey, México: UANL.

Martín, L., Arenal A., Fajardo, J., Pimentel, E., Hidalgo, L., Pacheco, M., García, C., & Santiesteban, D. (2006). Complete and partial replacement of Artemia nauplii by Moina micrura during early postlarval culture of white shrimp (Litopenaeus schmitti). Aquaculture Nutrition, 12, 89-96.

Mendoza, A. R., Aguilera, G. C., & Ferrara, A. M. (2008). Gar biology and culture: status and prospects. Aquaculture Research, 38, 748-763.

Mendoza, R., Aguilera, C., Rodriguez, G., González, M., & Castro, R. (2002). Morphophysiological studies on alligator gar (Atractosteus spatula) larval development as a basis for their culture and repopulation of their natural habitats. Reviews in Fish Biology and Fisheries, 12, 33-142.

Montenegro-Guillen S., Vammen K., & Cisneros R. (1991). Biotic interactions in Lake Xolotlán (Managua): An integrating approach. Hydrobiological Bulletin, 25, 177-179.

Morales-Ventura J., Nandini S., & Sarma, S. S. S. (2004). Functional responses during the early larval stages of the charal fish Chirostoma riojai (Pisces: Atherinidae) fed rotifers and cladocerans. Journal of Applied Ichthyology, 20, 417-421.

Murdoch W. W., & Bence, J. (1987). General predators and unstable prey populations. In W.C. Kerfoot & A. Sih (Eds.), Predation: Direct and Indirect Impacts on Aquatic Communities (pp. 17-30). Hanover, USA: University Press of New England.

Nandini, S., & Sarma, S.S.S. (2000). Zooplankton preference by two species of Freshwater ornamental fish larvae. Journal of Applied Ichthyology, 16, 273-275.

Nguyen, H. Q., Reinertsen, H., Wold, P., Tran, T. M., & Kjørsvik, E. (2010). Effects of early weaning strategies on growth, survival and digestive enzyme activities in cobia (Rachycentron canadum L.) larvae. Aquaculture International, 19, 63-78.

Peña-Aguado, F., Nandini, S., & Sarma, S. S. S. (2009). Functional response of Ameca splendens (Family Goodeidae) fed cladocerans during the early larval stage. Aquaculture Research, 40, 1594-1604.

Puvanendran, V., Salies K., Laurel, B., & Brown, J. A. (2004). Size-dependent foraging of larval Atlantic cod (Gadus morhua). Canadian Journal of Zoology, 82, 1380-1389.

R development Core Team (2014) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Vienna, Austria. http://www.R-project.org

Rao, T. R. (2003). Ecological and ethological perspectives in larval fish feeding. Journal of Applied Ichthyology, 13, 145-178.

Sarma, S. S. S., López-Rómulo, J. A. & Nandini, S. (2003). Larval feeding behaviour of blind fish Astyanax fasciatus (Characidae), black tetra Gymnocorymbus ternetzi (Characidae) and angel fish Pterophyllum scalare (Cichlidae) fed zooplankton. Hydrobiologia, 510, 207-216.

Tapia, M. & Zambrano, L. (2003). From aquaculture goal to real social and ecological impacts: carp introduction in rural central Mexico. AMBIO, 32, 252-257.

Tilseth, S. & Ellertsen, B. (1984). Food consumption rate and gut evacuation processes of first feeding cod larvae (Gadus morhua L.). In E. Dahl, D.S. Danielssen, E. Moksness & P. Solemdal (Eds.), The propagation of cod Gadus morhua L.: an international symposium, Arendal.

Trexler, J. C., McCulloch, C. E., & Travis, J. (1988). How can the functional reponse best be determined? Oecologia, 76, 206-214.

Venables, W. N. & Ripley, B. D. (2002). Modern Applied Statistics with S. New York, USA: Springer.

Villegas, C. T. (1990). The effects of growth and survival of feeding water fleas (Moina macrocopa Straus) and rotifers (Brachionus plicatilis) to milkfish (Chanos chanos Forsskal) fry. The Israeli Journal of Aquaculture-Bamidgeh, 42, 10-17.

Zambonino, J. L., & Cahu, C.L. (2007). Dietary modulation of some digestive enzymes and metabolic processes in developing marine fish: applications to diet formulation. Aquaculture, 268, 98-105.

Zambrano, L., Perrow, M., Aguirre-Hidalgo, V. & Macías-García, C. (1999). Impact of introduced carp (Cyprinus carpio) in subtropical shallow ponds in central Mexico. Journal of Aquatic Ecosystems Stress and Recovery, 6, 281-288.

Zaret, T.M. (1980). Predation and freshwater communities. New Haven, CT, USA: Yale University Press.


Refbacks

  • There are currently no refbacks.


© 2017 Universidad de Costa Rica. Para ver más detalles sobre la distribución de los artículos en este sitio visite el aviso legal. Este sitio es desarrollado por UCRIndex y Open Journal Systems. ¿Desea cosechar nuestros metadatos? dirección OAI-PMH: https://revistas.ucr.ac.cr/index.php/index/oai