Abstract
Euphausiids migrate vertically in the water column as part of their diel cycle. These migrations make them a key element in the biological pump of the pelagic environment. We took stratified zooplankton samples (0-50, 50-100, and 100-150 m) during the Pacífico-ERFEN campaign in September 2012 to evaluate the vertical distribution of euphausiids around Malpelo Island (3.8 - 4.2 N, 81.4 - 81.8 W). A total of 10 species belonging to four genera were identified. Euphausia diomedeae was the most abundant species in the 0-50 and 100-150 m layers, whereas E. distinguenda was the most abundant species in the 50-100 m layer. Based on quasi-Poisson generalized linear distribution models we found that abundance in the 50-100 m layer was significantly higher than in the 100-150 m layer (t = 3.05, p < 0.05). There were no significant differences associated with sampling hour (diurnal/nocturnal) (t = 0.07, p = 0.94). We calculated a vertical distribution index (VDI) based on abundance, which showed that euphausiid species were concentrated in the 50-100 m layer during day and night. Calyptopis larvae dominated in abundance at all depth layers, followed by furcilia larvae, juveniles and adults. The abundance of the latter increased gradually from the most superficial layer to the deepest layer, whereas juveniles showed the opposite pattern. This is the first study to describe the taxonomic composition, and vertical and spatial distribution of euphausiids associated with Malpelo Island, Colombian Pacific.
References
Ambriz-Arreola, I., Gómez-Gutiérrez, J., Franco-Gordo, M. C, Lavaniegos, B. E., & Godínez-Domínguez, E. (2012). Influence of coastal upwelling-downwelling variability on tropical euphausiid abundance and community structure in the inshore Mexican cen¬tral Pacific. Marine Ecology Progress Series, 451, 119-136.
Andersen, V., Sardou J., & Gasser, B. (1997). Macroplankton and micronekton in the northeast tropical Atlantic: abundance, community composition and vertical distribution in relation to different trophic environments. Deep Sea Research I, 44(2) 193-222.
Antezana, T. (2010). Euphausia mucronata: A keystone herbivore and prey of the Humboldt Current System. Deep Sea Research Part II: Topical Studies in Oceanography, 57(7), 652-662.
Azofeifa-Solano, J. C., Corrales-Ugalde, M., Castellanos-Osorio, I., & Morales-Ramírez, Á. (2016). Euphausiids (Crustacea: Euphausiacea) from a hotspot of marine biodiversity, Isla del Coco, Costa Rica, Eastern Tropical Pacific. Revista de Biología Tropical, 64(1), S221-S230.
Benavides, J. (1997). El manejo de datos oceanográficos mediante sig caris. Una aplicación para cruceros oceanográficos dentro del proceso de normalización. Boletín Científico CIOH, 18, 65-74.
Baker, A. de C., Boden, B. P., & Brinton, E. (1990). A Practical Guide to the Euphausiids of the World. British Museum (Natural History). London: Cromwell Road.
Boden, B. P., Johnson, M. W., & Brinton, E. (1955). The Euphausiacea (Crustacea) of the North Pacific. United States of America: University of California Press.
Brierley, A. (1999). A comparison of Antarctic euphausiids sampled by net and from geothermally heated waters: insights into sampling bias. Polar Biology, 22, 109-114.
Brinton, E. (1962). The distribution of Pacific euphausiids. Bulletin of the Scripps Institution of Oceanography of the University of California, 8(2), 21-270.
Brinton, E. (1967). Vertical migration and avoidance capability of euphausiids in the California Current. Limnology and Oceanography, 12(3), 451-483.
Brinton, E. (1979). Parameters relating to the distributions of planktonic organisms, especially Euphausiids in the eastern tropical Pacific. Progress in Oceanography, 8, 125-189.
Brinton, E., Ohman. M. D., Townsend, A., Knight, M., & Bridgeman, A.L. (2000). Euphausiids of the World Ocean, CD-ROM. Windows version 1.0 ed. (2000). UNESCO Publishing and ETI (Expert Center for Taxonomic Identification, University of Amsterdam).
Brinton, E., & Townsend, A. (2003). Decadal variability in abundances of the dominant euphausiid species in southern sectors of the California Current. Deep Sea Research Part II: Topical Studies in Oceanography, 50(14), 2449-2472.
Carvajal, L., Vergara, C., & López, R. (2009). Chaetognatha, Thaliacea, Euphausiacea and Pelagic Polychaeta in the Colombian Pacific Ocean, during two periods in 1996 (La Niña) and two periods in 1997 (El Niño). Revista Facultad de Ciencias Básicas, 5(1), 172-185.
Escribano, R., Marin, V., & Irribarren, C. (2000). Distribution of Euphausia mucronata at the upwelling area of Peninsula Mejillones, northern Chile: the influence of the oxygen minimum layer. Scientia Marina, 64(1), 69-77.
Estrada, J. A., Lutcavage, M., & Thorrold, S. R. (2005). Diet and trophic position of Atlantic bluefin tuna (Thunnus thynnus) inferred from stable carbon and nitrogen isotope analysis. Marine Biology, 147(1), 37-45.
Everson, I. (2000). Krill. Biology, Ecology and Fisheries. Oxford: Blackwell Science.
Färber-Lorda, J., Lavín, M. F., Zapatero, M. A., & Robles, J. M. (1994). Distribution and abundance of euphau¬siids in the Gulf of Tehuantepec during wind forcing. Deep-Sea Research I, 41, 359-367.
Färber-Lorda, J., Trasviña, A., & Cortés-Verdín, P. (2010). Summer distribution of euphausiids in the entrance of the Sea of Cortés in relation to hydrography. Deep- Sea Research II, 57, 631-641.
Fernández-Álamo, M. A., & Färber-Lorda, J. (2006). Zooplankton and the oceanography of the eastern tropical Pacific: a review. Progress in Oceanography, 69(2), 318-359.
Gibbons, M., Spiridonov, V., & Tarling G. (1999). Euphausiacea. In D. Boltovskoy (Ed.), South Atlantic zooplankton (pp. 1241-1279). Holanda: Backhuys Publishers.
Gómez-Gutiérrez, J., Funes-Rodríguez, R., Arroyo-Ramí¬rez, K., Sánchez-Ortíz, C. A., Beltrán-Castro, J. R., Hernández-Trujillo, S., Palomares-García, R., Abur¬to-Oropeza, O., & Ezcurra, E. (2014). Oceanographic mechanisms that possibly explain dominance of neri¬tic tropical zooplankton species assemblages around the Islas Marías Archipelago, Mexico. Latin Ame¬rican Journal of Aquatic Research, 42, 1009-1034.
González, H. E., Daneri, G., Iriarte, J. L., Yannicelli, B., Menschel, E., Barría, C., Pantoja, S., & Lizárraga, L. (2009). Carbon fluxes within the epipelagic zone of the Humboldt Current System off Chile: The significance of euphausiids and diatoms as key functional groups for the biological pump. Progress in Oceanography, 83(1), 217-227.
Hipfner, J. M. (2009). Euphausiids in the diet of a North Pacific seabird: annual and seasonal variation and the role of ocean climate. Marine Ecology Progress Series, 390, 277-289.
Hirota. Y. (1987). Vertical distribution of euphausiids in the western Pacific ocean and the eastern Indian ocean. Bulletin of Japan Sea Regional Fisheries Research Laboratory, 37, 175-224.
Huntley, M. E. & Escritor, F. (1991). Dynamics of Calanoides acutus (Copepoda. Calanoida) in Antarctic coastal waters. Deep Sea Research, 38, 1145-1167.
Linacre, L., & Palma, S. (2004). Variabilidad espacio-temporal de los eufáusidos frente a la costa de Concepción, Chile. Investigaciones Marinas, 32(1), 19-32.
López-Cortés, D. J. (1990). Distribución de la familia Euphausiidae (Euphausiacea: Crustacea) en el Golfo de Tehuantepec, México. Revista de Biología Tropi¬cal, 38, 21-28.
López, R., & Medellín, J. (2010). Distribución de eufausiáceos (Crustacea: Malacostraca) en el océano Pacífico colombiano durante el periodo 02 a 27 de septiembre de 2005. Revista de la Facultad de Ciencias Básicas, 6(2), 240-255.
Mathew, K. J. (1988). Net avoidance behaviour among larval, juvenile and adult euphausiids. Journal of the Marine Biological Association of India, 30(1-2), 93-98.
MMA. (1995). Resolución 1292 de 1995, Ministerio del Medio Ambiente, República de Colombia.
MADS. (2017). Resolución 1907 de 2017, Ministerio de Ambiente y Desarrollo Sostenible, República de Colombia.
Moreno, C. E. (2001). Métodos para medir la biodiversidad. Zaragoza: M&T-Manuales y Tesis SEA.
Mujica, A., & C. Pavez. (2008). Eufáusidos de la zona central de Chile, archipiélago Juan Fernández e islas Desventuradas. Latin American Journal of Aquatic Research, 36(2), 283-300.
O’Hara, R. B., & Kotze, D. J. (2010). Do not log-transform count data. Methods in Ecology and Evolution, 1, 118-122.
Pauly, D., Trites, A. W., Capuli, E., & Christensen, V. (1998). Diet composition and trophic levels of marine mammals. ICES Journal of Marine Science: Journal du Conseil, 55(3), 467-481.
Pomeroy, R. S., Parks, J. E., & Watson, L. M. (2004). How is your MPA doing?: a guidebook of natural and social indicators for evaluating marine protected area management effectiveness. Margate, UK: Thanet Press Ltd.
R Core Team (2013). R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. URL http://www.R-project.org/.
Ressler, P. H., Brodeur, R. D., Peterson, W. T., Pierce, S. D., Vance, P. M., Røstad, A., & Barth, J. A. (2005). The spatial distribution of euphausiid aggregations in the Northern California Current during August 2000. Deep Sea Research Part II: Topical Studies in Oceanography, 52(1), 89-108.
Rivera, M., & Giraldo, A. (2018). Riqueza de eufáusidos (Arthropoda: Malacostraca: Euphausiacea) de la cuenca Pacífica colombiana. Biota Colombiana, 19(2).
Rodríguez-Rubio, E., & Giraldo, A. (2011). Características oceanográficas en la isla Malpelo y su relación con la cuenca oceánica del Pacífico colombiano. Boletín de Investigaciones Marinas y Costeras, 40, 19-32.
Roger, C. (1971). Distribution verticale des euphausiacés (crustacés) dans les courants équatoriaux de l’Océan Pacifique. International Journal on Life in Oceans and Coastal Waters, 10(2), 134-144.
Ruzicka, J., Brodeur, R., Emmett, R., Steele, J., Zamon, J., Morgan, C., Thomas, A., & Wainwright, T. (2012). Interannual variability in the Northern California Current food web structure: Changes in energy flow pathways and the role of forage fish, euphausiids, and jellyfish. Progress in Oceanography, 102, 19-41.
Sameoto, D., Guglielmo, L., & Lewis, M. K. (1987). Day/night vertical distribution of euphausiids in the eastern tropical Pacific. Marine Biology, 96, 235-245.
Santora, J. A., Sydeman, W. J., Schroeder, I. D., Wells, B. K., & Field, J. C. (2011). Mesoscale structure and oceanographic determinants of krill hotspots in the California Current: Implications for trophic transfer and conservation. Progress in Oceanography, 91(4), 397-409.
Sogawa, S., Sugisaki, H., Saito, H., Okazaki, Y., Ono, T., Shimode, S., & Kikuchi, T. (2016). Seasonal and regional change in vertical distribution and diel vertical migration of four euphausiid species (Euphausia pacifica, Thysanoessa inspinata, T. longipes, and Tessarabrachion oculatum) in the northwestern Pacific. Deep Sea Research Part I: Oceanographic Research Papers, 109, 1-9.
Villegas, N. L., & Málikov, I. (2006). “Modelación de la estructura dinámica de las aguas de la cuenca del Pacífico colombiano”. Boletín Científico CCCP, 13, 97-114.
Villegas, N., Málikov, I., & Díaz, D. (2016). Variabilidad mensual de la velocidad de surgencia y clorofila a en la región del Panama Bight. Revista Mutis, 6(2), 82-94.
Werner, T., & Buchholz, F. (2013). Diel vertical migration behaviour in Euphausiids of the northern Benguela current: seasonal adaptations to food availability and strong gradients of temperature and oxygen. Journal of Plankton Research, 35(4), 792-812.
Wiebe, P. H., Bucklin, A., Kaartvedt, S., Røstad, A., & Blanco-Bercial, L. (2016). Vertical distribution and migration of euphausiid species in the Red Sea. Journal of Plankton Research, 38(4), 888-903.
Youngbluth, M. (1975). The vertical distribution and diel migration of euphausiids in the central waters of eastern South Pacific. Deep-Sea Research, 22, 519-536.
Zeidberg, L. D., & Robison, B. H. (2007). Invasive range expansion by the Humboldt squid, Dosidicus gigas, in the eastern North Pacific. Proceedings of the National Academy of Sciences, 104(31), 12948-12950.
Comments
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright (c) 2019 Marisol Rivera Gómez, Alan Giraldo