Revista de Biología Tropical ISSN Impreso: 0034-7744 ISSN electrónico: 2215-2075

Stingless bee honeys from Soconusco, Chiapas: a complementary approach



How to Cite

Espinoza-Toledo, C., Vázquez-Ovando, A., Torres de los Santos, R., López-García, A., Albores-Flores, V., & Grajales-Conesa, J. (2018). Stingless bee honeys from Soconusco, Chiapas: a complementary approach. Revista De Biología Tropical, 66(4), 1536–1546.


Stingless bees are located in the tropic areas, and produced a sweet natural substance called pot honey, with different properties and uses. Recently, most studies are focused on characterizing them, in order to contribute to their knowledge and the establishment of quality laws. Thus physicochemical, acceptance and palynological studies were performed in stingless bee honeys from Soconusco, Chiapas, in order to learn and contribute to their knowledge in the Tropics. Nine honey samples were collected from Melipona solani (Ms), M. beecheii (Mb) and Scaptotrigona mexicana (Sm) in different meliponaries. Our results registered physico-chemical values that ranged as follow; pH 2.8-4.8, electrical conductivity (EC) 114-1211 μS/cm, free acidity 24-100 meq/kg, aw 59-71 g/100g, moisture 35-38 %, color 0.13-0.75 Pfund scale, reducing sugars 47-71 %, hidroxymethylfurfural (HMF) not determined – 2.72 mg/100g, and diastase activity 1.92-11.22 DN. On the other hand, the principal component analysis (PCA) of physicochemical values showed that 86.9 % of the total variability between species was explained by the following parameters aw, moisture, free acidity, color, pH, sugars and EC. Sm honeys were associated (PCA) with a higher water content, free acidity and darker colors, while Melipona honeys with a sweeter taste and a lower diastase activity; thus honeys could be grouped by genera. The acceptance test showed that 78 % of honeys were preferred, being the SmCa sample in the category “I likely dislike” due to the bitter taste (disapproved by consumers). The melisopalynological results showed that M. beecheii honeys are monofloral with a 45 % of Fabaceae pollen, while Melipona solani and Scaptotrigona mexicana honeys are multi or polyfloral with diferent pollen types; Fabaceae, Melastomataceae, Malvaceae and Asteraceae. From this complementary study we can asume that it is necessary to implicate researchers with producers, so they could have accesss to stingless bee honey analysis and to help them to improve meliponaries management by identifying and introducing stingless bee flora.


Acquarone, C., Buera, P., & Elizalde, B. (2007). Pattern of pH and electrical conductivity upon honey dilution as a complementary tool for discriminating geographical origin of honeys. Food Chemistry, 101, 695-703.

Almeida-Muradian, L., Stramm, K., Horita, A., Barth, O., De Freitas, A., & Estevinho, L. (2013). Comparative study of the physicochemical and palynological characteristics of honey from Melipona subnitida and Apis mellifera. International Journal of Food Science and Technology, 48, 1698-1706.

Andrade, P. B., Amaral, M. T., Isabel, P., Carvalho, J. C. M. F., Seabra, R. M., & Cunha, A. P. (1999). Physicochemical attributes and pollen spectrum of Portuguese heather honeys. Food Chemistry, 66, 503-510.

Association of Official Analytical Chemists (AOAC). (2001). Methods of analysis. Washington, DC: AOAC.

Baltrusaityte, V., Venskutonis, P. R., & Ceksteryte, V. (2007). Radical scavenging activity of different floral origin honey and beebread phenolic extracts. Food Chemistry, 101, 502-514.

Batista de Sousa, J. M., Leite de Souza, E., Marques, G., Toledo, M., Gullón, B., Pintado, M., & Magnani, M. (2016). Sugar profile, physicochemical and sensory aspects of monofloral honeys produced by different stingless bee species in Brazilian semi-arid region. LWT Food Science and Technology, 65, 645-651.

Biluca, F. C., Braghini, F., Gonzaga, L. V., Costa, A. C. O., & Fett, R. (2016). Physicochemical profiles, minerals and bioactive compounds of stingless bee honey (Meliponinae). Journal of Food Composition and Analysis, 50, 61-69.

Bogdanov, S., Lullman, C., Martin, P., Werner, V., Russmann, H., Russmann, G., … Vit., P. (2004) Honey quality, methods of analysis and international regulatory standards: Review of the work of the international honey commission. Bee World, 80, 61-69.

Chuttong, B., Chanbang, Y., Sringarm, K., & Burgett, B. (2016). Physicochemical profiles of stingless bee (Apidae: Meliponini) honey from South East Asia (Thailand). Food Chemistry, 192, 149-155.

FAO. 2001. Food and Agriculture Organization of the United Nations.

Revised codex standard for honey (No. CODEX STAN 12–1981).

Available from:

Dardón, M. J., & Enriquez E. (2008). Caracterización fisicoquímica y antimicrobiana de la miel de nueve especies de abejas sin aguijón (Meliponini) de Guatemala. Interciencia, 33, 916-922.

Deliza, R., & Vit, P. (2013). Sensory evaluation of stingless bee pot honey. In P. Vit, S. Pedro, & Roubik, D. (Eds), Pot-Honey: A legacy of stingless bees (pp 349-361). Springer New York.

Di Rienzo, J. A., Casanoves, F., Balzarini, M. G., González, L., Tablada, M., & Robledo, Y. C. (2015). InfoStat versión 2014. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. Recuperado de http://www. infostat. com. ar

Estevinho, L., Feás, X., Seijas, J., & Vázquez-Tato, M. (2012). Organic honey from Tras-Os-Montes region (Portugal): chemical, palynological, microbiological and bioactive compounds characterization. Food and Chemical Toxicology, 50, 258–264.

FAO. (2001). Food and Agriculture Organization of the United Nations. Revised codex standard for honey (No. CODEX STAN 12-1981). Recuperado de

FAO. 2001. Food and Agriculture Organization of the United Nations.

Revised codex standard for honey (No. CODEX STAN 12–1981).

Available from:

Ferreira, I. C. F. R., Aires, E., Barreira, J. C. M., & Estevinho, L. M. (2009). Antioxidant activity of Portuguese honey samples: different contributions of the entire honey and phenolic extract. Food Chemistry, 114, 1438-1443.

Finola, M. S., Lasagno, M. C., & Marioli, J. M. (2007). Microbiological and chemical characterization of honeys from central Argentina. Food Chemistry, 100, 1649-1653.

Guerrini, A., Bruni, R., Maietti, S., Poli, F., Rossi, D., Paganetto, G., ... Sacchetti, G. (2009). Ecuadorian stingless bee (Meliponinae) honey: a chemical and functional profile of an ancient health product. Food Chemistry, 114, 1413-1420.

Habib, H., Al Meqbali, F., Kamal, H., Souka, U., & Ibrahim, W. (2014). Physicochemical and biochemical properties of honeys from arid regions. Food Chemistry, 153, 35-43.

Hammer, Ø., Harper, D. A. T., & Ryan, P. D. (2001). PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4 (1), 9. Recuperado de:

Instituto Nacional de Estadística y Geografía. (2015). Anuario Estadístico y Geográfico de Chiapas. Recuperado de

Karabagias, I. K., Badeka, A. V., Kontakos, S., Karabournioti, S., & Kontominas, M. G. (2014). Botanical discrimination of Greek unifloral honeys with physicochemical and chemometric analyses. Food Chemistry, 165, 181-190.

Klein, A., Vaissière, B., Cane, J., Steffan-Dewenter, I., Cunningham, S., Kremen, C., & Tschantke, T. (2007). Importance of pollinators in changing landscapes for world crops. Proceedings of the Royal Society B, 274, 303-313.

Kucuk, M., Kolaylı, S., Karaoglu, S., Ulusoy, E., Baltac, C., & Candan, F. (2007). Biological activities and chemical composition of three honeys of different types from Anatolia. Food Chemistry, 100, 526-534.

Louveaux, J., Maurizio, A., & G. Vorwohl. (1978). Methods of Melissopalinology. Bee World, 59, 39-157.

Manzanares, A. B., García, Z. H. B., Galdon, R., Rodríguez, E. R., & Romero, C. D. (2014). Physicochemical characteristics of minor monofloral honeys from Tenerife, Spain. LWT Food Science and Technology, 55, 572-578.

Martínez-Hernández, E., Cuadriello-Aguilar, J., Téllez-Valdez, O., Ramírez-Arriaga, E., Sosa-Nájera, M., Medina-Camacho, M., & Lozano-García, M. (1993). Atlas de las plantas y el polen utilizados por las cinco especies principales de abejas productoras de miel de la región del Tacaná, Chiapas, México. México, D.F: Editorial Universidad Nacional Autónoma de México.

Montenegro, S., Avallone, C., Crazov, A., & Aztarbe, M. (2005). Variación del color en miel de abejas (Apis mellifera). Reunión de Comunicaciones científicas y tecnológicas de la Universidad Nacional del Nordeste. Recuperado de

Palacios, R., Ludlow-Wiechers B., & Villanueva, R. 1991. Flora palinológica de la Reserva de la Biosfera de Sian’ Ka’an, Quintana Roo, México. Quintana Roo, México: Editorial Centro de Investigaciones de Quintana Roo.

Piedras, B., & D. Quiroz. (2007). Estudio melisopalinológico de dos mieles de la porción sur del Valle de México. Polibotánica, 23, 57-75.

Potts, S., Vulliami, B., Dafni, A., Ne`eman, G., & Wilmer, P. (2003). Linking bees and flowers: How do floral communities structure pollinator communities? Ecology, 84, 2628-2642.

Ramírez-Arriaga, E., & Martínez-Hernández, E. 2007. Melitopalynological Characterization of Scaptotrigona mexicana Guérin (Apidae: Meliponini) and Apis mellifera L. (Apidae:Apini) Honey Samples in Northern Puebla State, Mexico. Journal of the Kansas Entomological Society, 80, 377-391.

Rodriguez, G. O., Ferrer, B. S., Ferrer, A., & Rodriguez, B. (2004). Characterization of honey produced in Venezuela. Food Chemistry, 84, 499-502.

Roubik, D. W. (1989). Ecology and natural history of tropical bees. New York: Cambridge University Press.

Roubik, D. W. (1996). Measuring the meaning of honey bees. In A. Matheson, S. L. Buchmann, C. O’Toole, P. Westrich, & I. H. Williams (Eds), The conservation of bees (pp. 163-172). London: Academic Press.

Roubik, D. W., & Moreno, J.E. (1991). Pollen and spores of Barro Colorado Island. St. Louis: Missouri Botanical Garden.

Sant’Ana, L. D., Sousa, J. P., Salqueiro, F. B., Lorenzon, M. C., & Castro, R. N. (2012). Characterization of monofloral honeys with multivariate analysis of their chemical profile and antioxidant activity. Journal of Food Science, 77, 135-140.

Silvano, M., Varela, M., Palacio, M., Ruffunengo, S., & Yamul, D. (2014). Physicochemical parameters and sensory properties of honeys from Buenos Aires region. Food Chemistry, 152, 500-507.

Singh-Ackbarali, D., & Maharaj, R. (2014). Sensory evaluation as a tool in determining acceptability of innovative products developed by undergraduate students in food science and technology at the University of Trinidad and Tobago. Journal of Curriculum and Teaching, 3, 10-27.

Terrab, A., Dıez, M. J., & Heredia, F. J. (2003). Palynological, physico-chemical and colour characterisation of Moroccan honeys: II. Orange (Citrus sp.) honey. International Journal of Food Science and Technology, 38, 387-394.

Vit, P. (2008). Review: valorization honey of stingless bees (Meliponini). Brazilian Journal of Pharmaceutical Science, 50, 20-28.

Vit, P., Medina, M., & Enríquez, E. (2004). Quality standards for medicinal uses of Meliponinae honey in Guatemala, Mexico and Venezuela. Bee World, 85, 2-4.

Vit, P., Pedro, S., Vergara, C., & Deliza, R. (2017). Ecuadorian honey types described by Kichwa community in Rio Chico, Pastaza province Ecuador using free-choice profiling. Revista Brasileira de Farmacognosia, 27, 384-387.

Vit, P., Persano, L., Marano, M. L., & Salas de Mejías, E. (1998). Venezuelan stingless bee honeys characterised by multivariate analysis of compositional factors. Apidologie, 29, 377-389.

Vit, P., & Pulcini, P. (1996). Diastase and invertase activities in Meliponini and Trigonini honeys from Venezuela. Journal of Apicultural Research, 35, 57-62.



Download data is not yet available.