Abstract
Increasing urbanisation is widely associated with decline in biodiversity of all forms. The aim of the present study was to answer two questions: (i) Does rapid urbanization in Delhi (India) affect biodiversity of arbuscular mycorrhizal (AM) fungi? (ii) If so, how? We measured the AM fungal diversity at nine sites located in Delhi forests, which had different types of urban usage in terms of heavy vehicular traffic pollution, littering, defecation and recreational activities. The study revealed a significant decrease in AM fungal diversity (alpha diversity) and abundance measured as spore density, biovolume, mean infection percentage (MIP) in roots, soil hyphal length and easily extractable glomalin related soluble proteins (EE-GRSP) at polluted sites. Non-metric multidimensional scaling (NMDS) and nested PERMANOVA, revealed significant differences in AM fungal community structure which could be correlated with variations in soil moisture, temperature, pH, carbon, and nitrogen and phosphorus levels. BEST (biota and environmental matching) analysis of biological and environmental samples revealed that soil temperature and moisture accounted for 47.6 % of the total variations in the samples. The study demonstrated how different forms of human activities in urban ecosystems of Delhi are detrimental to the diversity and abundance of AM fungi.
References
Álvarez-Sánchez, J., Johnson, N. C., Antoninka, A., Chaudhary, V. B., Lau, M. K., Owen, S. M., ... & Castillo, S. (2011). Large-scale diversity patterns in spore communities of arbuscular mycorrhizal fungi. Mycorrhiza: occurrence and role in natural and restored environments. Nova Science Publishers, Hauppauge, 33-50.
Asmelash, F., Bekele, T., & Birhane, E. (2016). The potential role of arbuscular mycorrhizal fungi in the restoration of degraded lands. Frontiers in Microbiology, 7, 1095.
Bedini, S., Pellegrino, E., Avio, L., Pellegrini, S., Bazzoffi, P., Argese, E., & Giovannetti, M. (2009). Changes in soil aggregation and glomalin-related soil protein content as affected by the arbuscular mycorrhizal fungal species Glomus mosseae and Glomus intraradices. Soil Biology and Biochemistry, 41(7), 1491-1496.
Bertram, J. E., Orwin, K. H., Clough, T. J., Condron, L. M., Sherlock, R. R., & O’Callaghan, M. (2012). Effect of soil moisture and bovine urine on microbial stress. Pedobiologia, 55(4), 211-218.
Bradford, D. M. M. A. (1976). A Rapid and Sensitive Method for Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. European Journal of Anaesthesiology, 25, 248-254. DOI:10.1006/abio.1976.9999
Brundrett, M., Bougher, N., Dell, B., & Grove, T. (1996). Working With Mycorrhizas in Forestry and Agriculture. Australia: Australian Centre for International Agricultural Research.
Brundrett, M. C., & Ashwath, N. (2013). Glomeromycotan mycorrhizal fungi from tropical Australia III. Measuring diversity in natural and disturbed habitats. Plant and Soil, 370(1-2), 419-433.
Chaudhary, V. B., Sandall, E. L., & Lazarski, M. V. (2018). Urban mycorrhizas: predicting arbuscular mycorrhizal abundance in green roofs. Fungal Ecology. DOI: 10.1016/j.funeco.2018.03.002
Chaudhary, V. B., O'Dell, T. E., Rillig, M. C., & Johnson, N. C. (2014). Multiscale patterns of arbuscular mycorrhizal fungal abundance and diversity in semiarid shrublands. Fungal Ecology, 12, 32-43.
Clarke, K., & Gorley, R. (2015). PRIMER v7: User manual/tutorial. Plymouth, UK: PRIMER-E Ltd.
Daniels, B. A., & Skipper, H. D. (1982). Methods for the recovery and quantitative estimation of propagules from soil [Vesicular-arbuscular mycorrhizal fungi]. In N.C. Schenck (Ed.), Methods and Principles of Mycorrhizal Research (pp. 29-35). St Paul Minnesota, USA: American Phytopathological Society.
Davison, J., Moora, M., Öpik, M., Adholeya, A., Ainsaar, L., Bâ, A. ... & Johnson, N. C. (2015). Global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism. Science, 349(6251), 970-973.
Drigo, B., Pijl, A. S., Duyts, H., Kielak, A. M., Gamper, H. A., Houtekamer, M. J., ... & Kowalchuk, G. A. (2010). Shifting carbon flow from roots into associated microbial communities in response to elevated atmospheric CO2. Proceedings of the National Academy of Sciences, 107(24), 10938-10942.
Dumbrell, A. J., Ashton, P. D., Aziz, N., Feng, G., Nelson, M., Dytham, C., ... & Helgason, T. (2011). Distinct seasonal assemblages of arbuscular mycorrhizal fungi revealed by massively parallel pyrosequencing. New Phytologist, 190(3), 794-804.
García de León, D., Davison, J., Moora, M., Öpik, M., Feng, H., Hiiesalu, I., ... & Sepp, S. K. (2018). Anthropogenic disturbance equalizes diversity levels in arbuscular mycorrhizal fungal communities. Global Change Biology, 24(6), 2649-2659.
Gupta, M. M., Aggarwal, A. & Asha (2018). From mycorrhizosphere to rhizosphere microbiome: The paradigm shift. In B. Giri, R. Prasad, & A.Verma (Eds.), Root Biology (pp. 487-500). Springer Cham.
Gupta, M. M., Naqvi, N., & Kumar, P. (2017). i AMF-Centralized database of arbuscular mycorrhizal distribution, phylogeny and taxonomy. Journal of Recent Advances in Applied Sciences, 30(1), 1-5.
Gupta, M. M., Naqvi, N. S., & Singh, V. K. (2014). The state of arbuscular mycorrhizal fungal diversity in India: an analysis. Sydowia, 66, 265-288.
Hart, M. M., Antunes, P. M., Chaudhary, V. B., & Abbott, L. K. (2018). Fungal inoculants in the field: Is the reward greater than the risk?. Functional Ecology, 32(1), 126-135.
Lekberg, Y., & Waller, L. P. (2016). What drives differences in arbuscular mycorrhizal fungal communities among plant species? Fungal Ecology, 24, 135-138.
McGonigle, T. P., Miller, M. H., Evans, D. G., Fairchild, G. L., & Swan, J. A. (1990). A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New phytologist, 115(3), 495-501.
Neter, J., Kutner, M. H., Nachtsheim, C. J., & Wasserman, W. (1996). Applied linear statistical models (Vol. 4). Chicago: Irwin.
Oehl, F., Sieverding, E., Ineichen, K., Ris, E. A., Boller, T., & Wiemken, A. (2005). Community structure of arbuscular mycorrhizal fungi at different soil depths in extensively and intensively managed agroecosystems. New Phytologist, 165(1), 273-283.
Olsen, S. R. (1954). Estimation of available phosphorus in soils by extraction with sodium bicarbonate. Washington: United States Department of Agriculture.
Pagano, M. C., & Cabello, M. N. (2011). Mycorrhizal interactions for reforestation: Constraints to Dryland Agroforest in Brazil. ISRN Ecology, 2011.
Phillips, J. M., & Hayman, D. S. (1970). Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British mycological Society, 55(1), 158-IN18.
Powell, J. R., & Bennett, A. E. (2016). Unpredictable assembly of arbuscular mycorrhizal fungal communities. Pedobiologia, 59(1-2), 11-15.
Rani, R. E. K. H. A., & Mukerji, K. G. (1990). The distribution of vesicular-arbuscular mycorrhizal fungi in India. Acta Microbiologica Hungarica, 37(1), 3-7.
Shen, Q., Hedley, M., Camps Arbestain, M., & Kirschbaum, M. U. F. (2016). Can biochar increase the bioavailability of phosphorus? Journal of Soil Science and Plant Nutrition, 16(2), 268-286.
Sinha, G. N. (2014). An introduction to the Delhi Ridge. Department of Forest and Wildlife, Government of National Capital Territory of Delhi, New Delhi.
Souza, T. A. F. D., Rodríguez-Echeverría, S., Andrade, L. A. D., & Freitas, H. (2016). Could biological invasion by Cryptostegia madagascariensis alter the composition of the arbuscular mycorrhizal fungal community in semi-arid Brazil? Acta Botanica Brasilica, 30(1), 93-101.
Spatafora, J. W., Chang, Y., Benny, G. L., Lazarus, K., Smith, M. E., Berbee, M. L., … Stajich, J. E. (2016). A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data. Mycologia, 108(5), 1028-1046. DOI: 10.3852/16-042
SPSS Inc. (2008). SPSS Statistics for Windows (Version 17.0). Chicago: SPSS Inc.
Tchabi, A., Hountondji, F., Laouwin, L., Coyne, D., & Oehl, F. (2009). Racocetra beninensis from sub-Saharan savannas: a new species in the Glomeromycetes with ornamented spores. Mycotaxon, 110(1), 199-209.
Treseder, K. K. (2016). Model behavior of arbuscular mycorrhizal fungi: predicting soil carbon dynamics under climate change. Botany, 94(6), 417-423.
Turrini, A., Avio, L., Bedini, S., & Giovannetti, M. (2008). In situ collection of endangered arbuscular mychorrhizal fungi in a Mediterranean UNESCO Biosphere Reserve. Biodiversity and Conservation, 17(3), 643.
Turrini, A., & Giovannetti, M. (2012). Arbuscular mycorrhizal fungi in national parks, nature reserves and protected areas worldwide: a strategic perspective for their in situ conservation. Mycorrhiza, 22(2), 81-97.
Tyburska, J., Frymark-Szymkowiak, A., Kulczyk-Skrzeszewska, M., & Kieliszewska-Rokicka, B. (2013). Mycorrhizal status of forest trees grown in urban and rural environments in Poland. Ecological Questions, 18(1), 49-57.
van der Heyde, M., Ohsowski, B., Abbott, L. K., & Hart, M. (2017). Arbuscular mycorrhizal fungus responses to disturbance are context-dependent. Mycorrhiza, 27(5), 431-440.
Varela-Cervero, S., López-García, Á., Barea, J. M., & Azcón-Aguilar, C. (2016). Differences in the composition of arbuscular mycorrhizal fungal communities promoted by different propagule forms from a Mediterranean shrubland. Mycorrhiza, 26(5), 489-496.
Walder, F., & van der Heijden, M. G. (2015). Regulation of resource exchange in the arbuscular mycorrhizal symbiosis. Nature Plants, 1(11), 15159.
Walker, C. (1999). Methods for culturing and isolating arbuscular mycorrhizal fungi. Mycorrhiza News, 11(2), 2-4.
Yang, Y., Liang, Y., Han, X., Chiu, T. Y., Ghosh, A., Chen, H., & Tang, M. (2016). The roles of arbuscular mycorrhizal fungi (AMF) in phytoremediation and tree-herb interactions in Pb contaminated soil. Scientific Reports, 6, 20469.
Zou, Y. N., Chen, X., Srivastava, A. K., Wang, P., Xiang, L., & Wu, Q. S. (2016). Changes in rhizosphere properties of trifoliate orange in response to mycorrhization and sod culture. Applied Soil Ecology, 107, 307-312.
Comments
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright (c) 2018 Revista de Biología Tropical