Revista de Biología Tropical ISSN Impreso: 0034-7744 ISSN electrónico: 2215-2075

Abundance, diversity and metabolic print of nematod communities in different life zones of the Huetar Norte region of Costa Rica

Supplementary Files

Carta de presentación del artículo (Español (España))


nematode communities
life zones in Costa Rica
metabolic footprints
maturity indexes
comunidades de nematodos
zonas de vida
huellas metabólicas
índices de madurez

How to Cite

Varela Benavides, I. (2018). Abundance, diversity and metabolic print of nematod communities in different life zones of the Huetar Norte region of Costa Rica. Revista De Biología Tropical, 66(4).


Soil biotic communities represent 25 % of the existing global diversity, therefore their study is important for their conservation and sustainable use. Among edaphic biota, nematodes are considered ecologically important as environmental indicators. Tools like the maturity indexes, food web diagnostics and metabolic footprints are used in assessing the ecosystem in relation to the impact contaminants and other stressors, as well as monitoring and measuring changes in the structure and dynamics of the food webs and, more recently, to study the impact of climate factors on the nematode community. Costa Rica is a tropical country with a variety of miroclimates in a small area; this attribute is reflected in the different life zones described by Holdridge for Costa Rica, which differ in their patterns of precipitation, temperature and evapotranspiration patterns. In this research, the diversity of climates was exploited in order to contribute with the knowledge of the nematode communities of several ecosystems within different life zones. For this purpose, samples were taken in several ecosystems located in different life zones in the Region Huetar Norte from Costa Rica. High variation in taxa abundance between different management types within ecosystems was obtained. However, the low availability of replicates for proper statistical analyzes made the mean estimations numerically unprovable. The maturity indexes and the food web diagnosis did not show statistical differences between the studied zones, while, the metabolic footprints were positively correlated to life zones. The metabolic footprint decreased in the different life zones in correspondence with the increase of the average annual temperature reported for each one. The metabolic footprints associated with the decomposition of organic matter (fungivores, bacterivores, and enrichment) had the strongest correlations. The proposition is that the increase in metabolic footprints while the temperature decreases, reflects a change in the dynamics of chemical and biological decomposition of organic matter and in the energy flow in the food networks. This research supports finding in other studies, suggesting that the temperature is a key factor in the species distribution in edaphic ecosystems, and therefore it should be subject to further investigation.


Bertsch, F., & Henríquez, C. (2015). 2015: El Año Internacional de los Suelos. Agronomía Costarricense, 39(3), 149-155.

Bhusal, D. R., Tsiafouli, M. A., & Sgardelis, S. P. (2015). Temperature-based bioclimatic parameters can predict nematode metabolic footprints. Oecologia, 179(1), 187-199.

Bloemers, G. F., Hodda, M., Lambshead, P. J. D., Lawton, J. H., & Wanless, F. R. (1997). The effects of forest disturbance on diversity of tropical soil nematodes. Oecologia, 111, 575-582.

Bongers, T. (1990). The maturity index: an ecological measure of environmental disturbance based on nematode species composition. Oecología, 83, 14-19.

Bongers, T., & Bongers, M. (1998). Functional diversity of nematodes. Applied Soil Ecology, 10(3), 239-251.

Culman, S. W., Young-Mathews, A., Hollander, A. D., Ferris, H., Sánchez-Moreno, S., O’Geen, A. T., & Jackson, L. E. (2010). Biodiversity is associated with indicators of soil ecosystem functions over a landscape gradient of agricultural intensification. Landscape Ecology, 25(9), 1333-1348.

Davidson, E. A., & Janssens, I. A. (2006). Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature, 440(7081), 165-173.

Eisenhauer, N., Cesarz, S., Koller, R., Worm, K., & Reich, P. B. (2012). Global change belowground: impacts of elevated CO2, nitrogen, and summer drought on soil food webs and biodiversity. Global Change Biology, 18(2), 435-447.

Ferris, H. (2010). Form and function: metabolic footprints of nematodes in the soil food web. European Journal of Soil Biology, 46(2), 97-104.

Ferris, H., Bongers, T., & de Goede, R. G. M. (2001). A framework for soil food web diagnostics: extension of the nematode faunal analysis concept. Applied Soil Ecology, 18(1), 13-29.

Ferris, H., & Bongers, T. (2009). Indices developed specifically for analysis of nematode assemblages. En M. J. Wilson, & T. Kakouli-Duarte (Eds.), Nematodes as environmental indicators (pp. 124-145). Wallingford, UK: CAB International.

Ferris, H., Griffiths, B. S., Porazinska, D. L., Powers, T. O., Wang, K. H., & Tenuta, M. (2012). Reflections on plant and soil nematode ecology: past, present and future. Journal of Nematology, 44(2), 115-126.

Gillingham, P. K., Palmer, S. C., Huntley, B., Kunin, W. E., Chipperfield, J. D., & Thomas, C. D. (2012). The relative importance of climate and habitat in determining the distributions of species at different spatial scales: a case study with ground beetles in Great Britain. Ecography, 35(9), 831-838.

Gingold, R., Moens, T., & Rocha-Olivares, A. (2013). Assessing the response of nematode communities to climate change-driven warming: a microcosm experiment. PLoS One, 8(6), e66653.

Holdridge, L. R. (1967). Life zone ecology. San José, Costa Rica: Centro Científico Tropical.

Kergunteuil, A., Campos-Herrera, R., Sánchez-Moreno, S., Vittoz, P., & Rasmann, S. (2016). The abundance, diversity, and metabolic footprint of soil nematodes is highest in high elevation alpine grasslands. Frontiers in Ecology and Evolution, 4, 1-12.

Looby, C. I., & Treseder, K. K. (2018). Shifts in soil fungi and extracellular enzyme activity with simulated climate change in a tropical montane cloud forest. Soil Biology and Biochemistry, 117, 87-96.

Mueller, K. E., Blumenthal, D. M., Carrillo, Y., Cesarz, S., Ciobanu, M., Hines, J., Pabst, S., Pendall, E., Milano, C., Wall, D. H., & Eisenhauer, N. (2016). Elevated CO2 and warming shift the functional composition of soil nematode communities in a semiarid grassland. Soil Biology and Biochemistry, 103, 46-51.

Neher, D. A. (1999). Nematode communities in organically and conventionally managed agricultural soils. Journal of. Nematology, 31, 142-154.

Neher, D. A., & Olson, R. K. (1999). Nematode communities in soils of four farm cropping management systems. Pedobiología, 43, 430-438.

Nielsen, U. N., Wall, D. H., Adams, B. J., & Virginia, R. A. (2011). Antarctic nematode communities: observed and predicted responses to climate change. Polar Biology, 34(11), 1701-1711.

Peraza, W. (2010). Nematofauna asociada a cultivo de café (Coffea arabica) orgánico y convencional en Aserrí, Costa Rica. Ingenierías & Amazonia, 3(2), 105-112.

Rodríguez, A., Muñoz, Y. E., & Pocasangre, L. E. (2011). Evaluación de nematodos de vida libre como indicadores de calidad y salud de suelos en tres sistemas de producción de banano. Tierra Tropical, 8(1), 115-125.

Salguero-Londoño, B. M. (2006). Caracterización de nematodos de vida libre como bioindicadores de calidad y salud de suelos bananeros en Costa Rica (Tesis de Maestría). Centro Agronómico Tropical de Investigación y Enseñanza, Turrialba, Costa Rica.

Sánchez-Moreno, S., & Talavera, M. (2013). Los nematodos como indicadores ambientales en agroecosistemas. Ecosistemas, 22(1), 50-55.

Seinhorst, J. W. (1959). A rapid method for the transfer of nematodes from fixative to anhydrous glycerine. Nematologica, 4, 67-69.

Shannon, C. E., & Weaver, W. (1949). The mathematical theory of communication. Urbana, IL: University of Illinois Press.

Sieriebriennikov, B., Ferris, H., & de Goede, R. G. M. (2014). NINJA: An automated calculation system for nematode-based biological monitoring. European Journal of Soil Biology, 61, 90-93.

Suggitt, A. J., Gillingham, P. K., Hill, J. K., Huntley, B., Kunin, W. E., Roy, D. B., & Thomas, C. D. (2011). Habitat microclimates drive fine‐scale variation in extreme temperatures. Oikos, 120(1), 1-8.

Traunspurger, W., Reiff, N., Krashevska, V., Majdi, N., & Scheu, S. (2017). Diversity and distribution of soil micro-invertebrates across an altitudinal gradient in a tropical montane rainforest of Ecuador, with focus on free-living nematodes. Pedobiologia, 62, 28-35.

van Bezooijen, J. (2006). Methods and techniques for nematology. Wageningen, The Netherlands: Wageningen University Press.

Yeates, G. W. (1994). Modification and qualification of the nematode maturity index. Pedobiología, 38, 97-101.

Yeates, G. W., Bongers, T., de Goede, R. G. M., Freckman, D. W., & Georgieva, S. S. (1993). Feeding habits in soil nematode families and genera - an outline for soil ecologists. Journal of Nematology, 25, 315-331.

Zamioudis, C., & Pieterse, C. M. (2012). Modulation of host immunity by beneficial microbes. Molecular Plant-Microbe Interactions, 25(2), 139-150.



Download data is not yet available.