Abstract
The increase of CO2 in the atmosphere can be reduced by capturing them through the photosynthetic process, with special emphasis on fast growing perennial species such as bamboo. The objective of the present study was to quantitatively evaluate the aerial biomass and estimate the carbon content for the species Guadua angustifolia Kunth and Bambusa oldhamii Munro, in commercial plantations established in communities of the Northeast Sierra of Puebla, Mexico. The estimation of population and aerial biomass for both species is tended by a selection of 10 % of plants in one hectare. The samplings were carried out from June 2016 to September 2017. For the plantation of B. Oldhamii Munro, the number of culms per plant gradually increased towards the most recent generations, from 3.6 stems in the most adult cohort to 4.5 in the youngest. The diameter of the stems and their average height show a gradual increase from the older cohorts to the recent cohorts. The total aerial biomass estimated in the plantation of B. oldhamii Munro was 103 403 48 Mgha-1 distributed in the asses of the four years. The total aerial biomass estimated in the plantation of G. angustifolia Kunth is 47 665 11 Mgha-1.
References
Anten, N. P., & Hirose, T. (1998). Biomass allocation and light partitioning among dominant and subordinate individuals in Xanthium canadense stands. Annals of Botany, 82, 665-673.
Arango, A., & Camargo, J. C. (2010). Bosques de guadua del Eje Cafetero de Colombia: oportunidades para su inclusión en los mercados de carbono y en el programa redd+. Recursos Naturales y Ambiente, 61, 77-85. DOI: 10.13140/RG.2.1.3491.0569
Baskerville, G. L. (1972). Use of logarithmic regression in the estimation of plant biomass, Canadian Journal of Forest Research, 2, 49-53. DOI: 10.1139/x72-009
Brown, S. (1997). Estimating biomass and biomass change of tropical forests: a primer. FAO Forest Paper 143. Roma: FAO. Recuperado de: http://www.fao.org/docrep/w4095e/w4095e00.htm
Buckingham, K., Jepson, P., Wu, L., Ramanuja Rao, I. V., Jiang, S., Liese, W., Lou, Y., & Fu, M. (2011). The potential of bamboo is constrained by outmoded policy frames. Ambio, 40, 544-548. DOI 10.1007/s13280-011-0138-4
Camargo, J., Chará, J., Giraldo, L. P., Chará, M., & Ximena, G. (2010). Beneficios de los corredores ribereños de Guadua angustifolia en la protección de ambientes acuáticos en la Ecorregión cafetera de Colombia. Efectos sobre las propiedades del suelo. Recursos Naturales y Ambiente, 61, 53-59. DOI: 10.13140/RG.2.1.3491.0569
Castañeda, A., Vargas, J., Gómez, A., Valdez, J., & Vaquera, H. (2005). Acumulación de carbono en la biomasa aérea en una plantación de Bambusa oldhamii. Agrociencia, 30(1), 107-113.
Chrystanty, L., Mailly, D., & Kimmins, J. P. (1996). Without bamboo, the land dies: Biomasss, literfall, and soil organic matter dynamics of a Javanese bamboo talun-kebun system. Forest Ecology Management, 87, 75-88. DOI: 10.1016/S0378-1127(96)03834-0
Cusack, V. (1997). Bamboo Rediscovered. Trentham, Victoria: Earth Garden Books. Recuperado de http://trove.nla.gov.au/work/24676120?q&versionId=45621233
Elizondo-Briceño, E., Barquero, V., Fonseca, V. L., Bonilla, G. M., & Segura, E. E. (2016). Potencial de crecimiento y almacenamiento de carbono en plantaciones de bambú Guadua (Guadua angustifolia) en la Zona Sur de Costa Rica. Primer congreso de bambú, México. Recuperado de https://1ercongresobambu.files.wordpress.com/2017/02/elemer-bricec3b1o-potencial-de-crecimiento-y-almacenamiento-de-carbono-en-plantaciones-de-bambc3ba-guadua-en-la-zona-sur-de-costa-rica.pdf
Huaqiang, D., Guomo, Z., Hongli, G., Wenyi, F., Xiaojun, X., Weiliang, F., & Yongjun, S. (2011). Satellite-based carbon stock estimation for bamboo forest with a non-linear partial least square regression technique. International Journal of Remote Sensing, 33(6), 1917-1933. DOI: 10.1080/01431161.2011.603379
INEGI. (2010). Marco Geoestadístico 2010 (Versión 4.3). Teziutlán, Puebla: Compendio de información geográfica municipal de los Estados Unidos Mexicanos. Recuperado de http://www.inegi.org.mx/geo/contenidos/topografia/compendio.aspx
IPCC (Intergovernmental Panel on Climate Change). (2000). Land use, Land-use Change and Forestry. Cambridge, U. K.: Cambridge University, Press. Recuperado de http://www.ipcc.ch/ipccreports/sres/land_use/index.php?idp=0
Judziewicz, E. J., Clark, L. G., Londoño, X., & Stern, J. M. (1999). American Bamboos. Washington, D.C.: Smithsonian Institution Press.
Kleinhenz, V., & Midmore, D. J. (2001). Aspects of bamboo agronomy. Advances in Agronomy, 74, 99-149.
Lobovikov, M., Paudel, S., Piazza, M., Ren, H., & Wu, J. (2007). World Bamboo Resources. Rome, Italy: FAO. Recuperado de http://www.fao.org/docrep/010/a1243e/a1243e00.htm
Lobovikov, M., Schoene, D., & Lou, Y. (2012). Bamboo in climate change and rural livelihoods. Mitigation and Adaptation Strategies for Global Change, 17(3), 261-276. DOI: 10.1007/s11027-011-9324-8
Nath, A. J., Lal, R., & Das, A. K. (2015). Managing woody bamboos for carbon farming and carbon trading. Global Ecology and Conservation, 3, 654-663. DOI: 10.1016/j.gecco.2015.03.002
Riaño, N. M., Londoño, X., López, Y., & Gómez, J. H. (2002). Plant growth and biomass distribution on Guadua angustifolia Kunth in relation to ageing in Valle del Cauca-Colombia. Bamboo Science and Culture: The Journal of the American Bamboo Society, 16(1), 43-51.
Rojas-Quiroga, R., Li, T., Lora, G., & Andersen, L. (2013). A measurement of the carbon sequestration potential of Guadua angustifolia in the Carrasco National Park, Bolivia (Development Research Working Paper series, no. 04/2013). La Paz, Bolivia: Institute for Advanced Development Studies. Recuperado de http://www.inesad.edu.bo/pdf/wp2013/wp04_2013.pdf
Shilin, Z., Naixun, M., & Maoyi, F. (1994). A Compendium of Chinese Bamboo. Nanjing, China: China Forestry Publishing House.
Singh, A. N., & Singh, J. S. (1999). Biomass, net primary production and impact of bamboo plantation on soil redevelopment in a dry tropical region. Forest Ecology and Management, 119, 195-207. DOI: 10.1016/S0378-1127(98)00523-4
Singnar, P., Das, C. M., Sileshi, W. G., Brahma, B., Nath, J, A., & Das, K. A. (2017). Allometric scaling, biomass accumulation and carbon stocks in different aged stands of thin-walled bamboos Schizostachyum dullooa, Pseudostachyum polymorphum and Melocanna baccifera. Forest Ecology and Management, 395, 81-91. DOI: 10.1016/S0378-1127(17)30599-6
White, D., Velarde, S. J., Alegre, J. C., & Tomich, T. P. (2005). Alternatives to Slash-and-Burn (ASB) in Peru, Summary Report and Synthesis of Phase II. Alternatives to Slash-and-Burn Programme, Nairobi, Kenya. Kenya: Consultative Group on International Agricultural Research. Recuperado de http://www.asb.cgiar.org
Wiant, H. V. & Harner, E. J. (1979). Percent bias and standard error in logarithmic regression. Forest Science, 25(1), 167-168.
Yen, T. M., & Lee, J. S. (2011). Comparing aboveground carbon sequestration between moso bamboo (Phyllostachys heterocycla) and China fir (Cunning hamialanceolata) forests based on the allometric model. Forest Ecology and Management, 261, 995-1002. DOI: 10.1016/j.foreco.2010.12.015
Yiping, L., Yanxia, L., Breckinghan, K., Henley, G., & Guomo, Z. (2011). Bamboo and climate change mitigation. International Network for Bamboo and Rattan (Inbar). Technical report no 32. Beijing, China: The International Network for Bamboo and Rattan. Recuperado de www.inbar.int
Zhang, H., Zhuang, S., Sun, Bo, Ji, H., Li, C., & Zhou, S. (2014). Estimation of biomass and carbon storage of moso bamboo (Phyllostachys pubescens Mazel ex Houz.) in southern China using a diameter-age bivariate distribution model. Forestry, 87, 674-668. DOI: 10.1093/forestry/cpu028
Comments
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright (c) 2018 Revista de Biología Tropical