Abstract
Zooplankton is an important component to understand oceanographic dynamics, they are considered good indicators of environmental variability, since most species are short-lived they can be tight coupling of climate and population dynamics, and some taxa are sensitive to variables such as temperature, quality and quantity of food, oxygenation and stratification. In the Colombian Caribbean two oceanographic cruises were carried out, in order to characterize and analyze the biodiversity of the continental margin, for the periods May-June 2008 and November-December 2009. The objective of this study was to determine which oceanographic variable was the most important in the distribution of zooplankton in the oceanic waters, and how the variables structure the community. In each cruise, zooplankton samples were obtained by vertical hauls with a 1 m2 diameter conical net (200 μm mesh size). The zooplankton community structure was studied by automated image analysis (ZooImage), which combined with abundance data, allowed to calculate the slope of size spectrum, and diversity indexes of taxa and sizes. The environmental variables included temperature, salinity, oxygen and chlorophyll a of the water column, and were used to calculate the stratification with the Brunt-Vaiisala frequency; this information was complemented by satellite images of temperature, surface chlorophyll, geostrophic currents and sea level, obtained from MODIS and AQUA products. The association between environmental variables and the zooplankton community structure was determined using Spearman’s correlation ranges with the Bioenv routine and a stepwise regression model, and Principal component analysis (PCA). Our results showed spatial and temporal patterns in the oceanographic conditions of the study area, such as upwelling in the Northeast region, strong stratification in the Southwest, and mesoscale activity. The abundance of zooplankton exhibited differences between the two climatic seasons and zones. Temporal differences were also evident in the size and diversity of taxa (ANOVA 2-way p <0.05). These changes were related to the moderate upwelling and the activity of mesoscale eddies. Cyclonic and anticyclonic eddies of variable size can either transport or retain zooplankton over cross-shelf and oceanic areas, thus modifying the taxonomic structure of the community. According to the Bioenv analysis, the main variables that explained the abundance and composition of zooplankton were sea level and chlorophyll a (Spearman correlation = 0.49). The stepwise regression showed that stratification, oxygen and chlorophyll a were the most important predictors of zooplankton abundance and size. Rev. Biol. Trop. 66(2): 688-708. Epub 2018 June 01.
References
Andrade, C. A., & Barton, E. D. (2000). Eddy development and motion in the Caribbean Sea. Journal of Geophysical Research: Oceans, 105(C11), 26191-26201. DOI: 10.1029/2000JC000300
Andrade, C. A., & Barton, E. D. (2005). The Guajira upwelling system. Continental Shelf Research, 25(9), 1003-1022. DOI:10.1016/j.csr.2004.12.012
Andrade, C. A., Barton, E. D., & Mooers, C. N. (2003). Evidence for an eastward flow along the Central and South American Caribbean Coast. Journal of Geophysical Research, 108(C6)3185, 1-16. DOI: 10.1029/2002JC001549
Andrade-Amaya, C. A. (2001). Las corrientes superficiales en la cuenca de Colombia observadas con boyas de deriva. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 25(96), 321-335. (Recovered from http://www.accefyn.org.co/revista/vol_25.htm)
Arango, C., Dorado, J., Guzmán, D., & Ruíz, J. (2014). Informe análisis compuesto según el índice ENSO ONI, para la temperatura media trimestral de Colombia. IDEAM. Recuperado de http://institucional. ideam. gov. co/jsp/2456 (con acceso 20/10/2014).
Beaugrand, G., Reid, P. C., Ibanez, F., Lindley, J. A., & Edwards, M. (2002). Reorganization of North Atlantic marine copepod biodiversity and climate. Science, 296(5573), 1692-1694. DOI: 10.1126/science.1071329
Bernal, G., Poveda, G., Roldán, P., & Andrade, C. (2006). Patrones de variabilidad de las temperaturas superficiales del mar en la costa Caribe colombiana. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 30(115), 195-208 (Recovered from http://www.accefyn.org.co/revista/vol_30.htm).
Canales, T. M., Law, R., & Blanchard, J. L. (2016). Shifts in plankton size spectra modulate growth and coexistence of anchovy and sardine in upwelling systems. Canadian Journal of Fisheries and Aquatic Sciences, 73(4), 611-621. https://doi.org/10.1139/cjfas-2015-0181
Chenillat, F., Franks, P., Riviére, P., Capet, X., Grima, N., & Blanke, B. (2015). Plankton dynamics in a cyclonic eddy in the Southern California Current System. Journal of Geophysical Research: Oceans, 120(8), 5566-5588.
Clarke, K. R., & Gorley, R. N. (2006). PRIMER v6: User Manual/Tutorial. England: Plymouth.
Clarke, K., & Warwick, R. (2001). Change in Marine Communities: An approach to statistical analysis and interpretation, 2nd ed. England: Plymouth.
Correa-Ramírez, M. A., Hormazábal, S., & Yuras, G. (2007). Mesoscale eddies and high chlorophyll concentrations off central Chile (29–39 S). Geophysical Research Letters, 34, L12604. DOI: 10.1029/2007GL029541
Di Mauro, R., Cepeda, G., Capitanio, F., & M.D. Viñas. (2011). Using ZooImage automated system for the estimation of biovolume of copepods from the northern Argentine Sea. Journal of Sea Research, 66, 69-75. DOI:10.1016/j.seares.2011.04.013dx.doi.org/10.1038/189732a0
Escribano, R., Bustos-Ríos, E., Hidalgo, P., & Morales, C.E. (2016). Non-limiting food conditions for growth and production of the copepod community in a highly productive upwelling zone. Continental Shelf Research, 126, 1-14. DOI: 10.1016/j.csr.2016.07.018
Franco-Herrera, A., Castro, L., & P. Tigreros. (2006): Plankton Dynamics in the South-Central Caribbean Sea: Strong Seasonal Changes in a Coastal Tropical System. Caribbean Journal of Science, 42(1), 24-38. (Recovered from http://www.bioone.org/loi/cjos)
Fratantoni, D. M., Johns, W. E., & Townsend, T. L. (1995). Rings of the North Brazil Current: Their structure and behavior inferred from observations and a numerical simulation. Journal of Geophysical Research: Oceans, 100(C6), 10633-10654. DOI: 10.1029/95JC00925
Gómez-Canchong, P. (2011). Estabilidad y resiliencia en comunidades marinas un enfoque alométrico (Doctoral dissertation, Universidad de Concepción. Facultad de Ciencias Naturales y Oceanográficas. Departamento de Oceanografía, Chile). Retrieved from Repositorio Udec (URI: http://repositorio.udec.cl/handle/11594/745)
Grosjean, P., & Denis, K. (2007). ZooImage users manual. Retrieved from http://www.sciviews.org/zooimage/docs/ZooPhytoImageManual.pdf
Gutiérrez, J. M. (2011). Estructura vertical del zooplancton oceánico del mar Caribe colombiano (Master’s thesis, Universidad Nacional de Colombia, Santa Marta, Colombia). Available from bdigital repositiorio institucional UN (http://www.bdigital.unal.edu.co/7184/1/190253.2011.pdf)
Hays, G. C., Richardson, A. J., & Robinson, C. (2005). Climate change and marine plankton, Trends in Ecology & Evolution, 20(6), 337-344. DOI:10.1016/j.tree.2005.03.004
Hidalgo, P., Escribano, R., Jorquera, E., & Vergara, O. (2012). How coastal upwelling influences spatial pattern of size-structured diversity of copepods in central southern Chile (summer 2009). Progress in Oceanography, 92-95,134-145. DOI: 10.1016/j.pocean.2011.07.012
Hidalgo, P., Escribano, R., Vergara, O., Jorquera, E., Donoso, K., & Mendoza, P., 2010. Patterns of copepod diversity in the Chilean coastal upwelling system. Deep Sea Research Part II: Tropical Studies in Oceanography, 57, 2089-2097. DOI: 10.1016/j.dsr2.2010.09.012
IOC, SCOR, & IAPSO. (2010). The International Thermodynamic Equation of Seawater - 2010: Calculation and Use of Thermodynamic Properties. Intergovernmental Oceanographic Commission, Manuals and Guides No. 56, UNESCO (English).
Irigoien, X., Fernandes, J. A., Grosjean, P., Denis, K., Albaina, A., & Santos, M. (2009). Spring zooplankton distribution in the Bay of Biscay from 1998 to 2006 in relation with anchovy recruitment. Journal of Plankton Research, 31(1), 1-17. DOI: 10.1093/plankt/fbn096
Jouanno, J., J., Sheinbaum, B., Barnier, J. M., Molines, J. M., & Candela, J. 2012. Seasonal and Interannual Modulation of the Eddy Kinetic Energy in the Caribbean Sea. Journal of Physical Oceanography, 42, 2041-2055. DOI: 10.1175/JPO-D-12-048.1
Jouanno, J., Sheinbaum, J., Barnier, B., Molines, J.-M., Debreu, L., & Lemarié, F. (2008). The mesoscale variability in the Caribbean Sea. Part I: Simulations and characteristics with an embedded model. Ocean Modelling, 23(3-4), 82-101. DOI: 10.1016/j.ocemod.2008.04.002
Kinder, T. H., Heburn, G. W., & Green, A. W. (1985). Some aspects of the Caribbean circulation, Marine Geology, 68(1), 25-52. DOI: 10.1016/0025-3227(85)90004-0
Krivtsov, V., Howarth, M., & Jones, S. (2009). Characterising observed patterns of suspended particulate matter and relationships with oceanographic and meteorological variables: Studies in Liverpool Bay. Environmental Modelling & Software, 24(6), 677-685. DOI: 10.1016/j.envsoft.2008.09.012 · Source: DBLP
Lefort, S., Aumont, O., Bopp, L., Arsouze, T., Gehlen, M., & Maury O. (2015). Spatial and body-size dependent response of marine pelagic communities to projected global climate change. Global Change Biology, 21(1), 154-164. DOI: 10.1111/gcb.12679
Llinás, L., Pickart, R. S., Mathis, J. T., & Smith, S. L. (2009). Zooplankton inside an Arctic Ocean cold-core eddy: Probable origin and fate. Deep Sea Research Part II: Topical Studies in Oceanography, 56(17), 1290-1304. https://doi.org/10.1016/j.dsr2.2008.10.020
López-Salgado, I., Gasca, R., & Suárez-Morales. (2000). La comunidad de copépodos (Crustacea) en los giros a mesoescala en el occidente del Golfo de México (julio, 1995). Revista de Biologia Tropical, 48(1), 169-179. (Recovered from http://www.ots.ac.cr/rbt/pages/vols/vol48-1.html).
Mann, K., & Lazier, J. (1991). Dynamics of Marine Ecosystems. Biological-physical Interactions in the Oceans. Blackwell: Oxford, England.
Manríquez, K., Escribano, R., & Riquelme-Bugueño, R. (2012). Spatial structure of the zooplankton community in the coastal upwelling system off central-southern Chile in spring 2004 as assessed by automated image analysis, Progress in Oceanography, 92-95, 121-133. DOI: 10.1016/j.pocean.2011.07.020
Manríquez, K., Escribano, R., & Hidalgo, P. (2009). The influence of coastal upwelling on the mesozooplankton community structure in the coastal zone off Central/Southern Chile as assessed by automated image analysis. Journal of Plankton Research, 31(9), 1075-1088.
Medellín-Mora, J., & Escribano, R. (2013). Análisis automático de zooplancton utilizando imágenes digitalizadas: estado del conocimiento y perspectivas en Latinoamérica. Latin American Journal of Aquatic Research, 41(1), 29-41. http://dx.doi.org/103856/vol41-issue1-fulltext-2
Medellín-Mora, J., & Martínez-Ramírez, O. (2010). Distribución del mesozooplancton en aguas oceánicas del mar Caribe colombiano durante mayo y junio de 2008. In INVEMAR (Eds.), Biodiversidad del Margen Continental del Caribe colombiano (Serie de Publicaciones Especiales, INVEMAR No. 20) (pp.119-148), Santa Marta: Colombia
Medellín-Mora, J., Escribano, R., & Schneider, W. (2016). Community response of zooplankton to oceanographic changes (2002-2012) in the central/southern upwelling system of Chile, Progress in Oceanography, 142, 17-29. https://doi.org/10.1016/j.pocean.2016.01.005
Michele, H., & Foyo, M. (1976). Studies of Caribbean zooplankton. Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida, EE.UU.
Mooers, C., & Maul, G. (1998). Intra-Americas sea circulation, coastal segment (3,W). In A. Robinson & K. H. Brink (Eds.), The Sea (pp. 183-208). John Wiley and Sons, Inc., New York: EE.UU.
Moore, T. S., Matear, R. J., Marra, J., & Clementson, L. (2007). Phytoplankton variability off the Western Australian Coast: Mesoscale eddies and their role in cross-shelf exchange. Deep Sea Research Part II: Topical Studies in Oceanography, 54(8), 943-960. https://doi.org/10.1016/j.dsr2.2007.02.006
Morales, C. E., Torreblanca, M., Hormazabal, S., Correa-Ramírez, M., Nuñez, S., & Hidalgo, P. (2010). Mesoscale structure of copepod assemblages in the coastal transition zone and oceanic waters off central-southern Chile, Progress in Oceanography, 84(3-4), 158-173. https://doi.org/10.1016/j.pocean.2009.12.001
Morrison, J. M., & Nowlin, W. D. (1982). General distribution of water masses within the eastern Caribbean Sea during the winter of 1972 and fall of 1973, Journal of Geophysical Research: Oceans, 87(C6), 4207-4229. DOI: 10.1029/JC087iC06p04207
Nystuen, J. A., & Andrade, C. A. (1993). Tracking mesoscale ocean features in the Caribbean Sea using Geosat altimetry. Journal of Geophysical Research, 98(C5), 8389-8394. DOI: 10.1029/93JC00125
Owre, M., & Foyo, H. B. (1972). Studies on Caribbean zooplankton. Description of the program and results of the first cruise. Bulletin of Marine Science, 22(2), 483-521. (Recovered from http://www.ingentaconnect.com/content/umrsmas/bullmar/1972/00000022/00000002/art00013).
Park, T. S. (1970). Calanoid copepods from the Caribbean Sea and Gulf of Mexico. 2. New species and new records from plankton samples. Bulletin of Marine Science, 20(2), 72-546. (Recovered from http://www.ingentaconnect.com/content/umrsmas/bullmar/1970/00000020/00000002/art00012).
Parson, T., Maita, Y., & Lalli, C. (1984). A manual of chemical and biological methods for seawater samples analysis. Oxford, England: Pergamon Press.
Peterson, W. (1998). Life cycle strategies of copepods in coastal upwelling zones. Journal in Marine System, 15, 313-326. https://doi.org/10.1016/S0924-7963(97)00082-1
Posada, B., & Henao, W. (2008). Diagnóstico de la erosión en la zona costera del Caribe colombiano. Serie de Publicaciones Especiales, INVEMAR No. 13. Santa Marta: Colombia.
Prairie, J., Sutherland, K., Nickols, K., & Kaltenberg, A. (2012). Biophysical interactions in the plankton: A cross-scale review. Limnology and Oceanography. Fluids and Environments, 2(1), 121-145. DOI: 10.1215/21573689-1964713
Rand, P. S., & Hinch, S. G. (1998). Spatial patterns of zooplankton biomass in the northeast Pacific Ocean. Marine Ecology Progress Series, 171, 181-186 (Recovered from http://www.int-res.com/articles/meps/171/m171p181.pdf)
Rangel-Buitrago, N., & Idárraga-García, J. (2010). Geología general, morfología submarina y facies sedimentarias en el margen continental y los fondos oceánicos del mar Caribe colombiano. In INVEMAR (Eds.), Biodiversidad del Margen Continental del Caribe colombiano (Serie de Publicaciones Especiales, INVEMAR No. 20) (p. 29-51), Santa Marta: Colombia.
Restrepo, J. C., Ortíz, J. C., Pierini, J., Schrottke, K., Maza, M., Otero, L., & Aguirre, J. (2014). Freshwater discharge into the Caribbean Sea from the rivers of Northwestern South America (Colombia): Magnitude, variability and recent changes. Journal of Hydrology, 509, 266-281. https://doi.org/10.1016/j.jhydrol.2013.11.045
Restrepo, J. D. (2008). Deltas de Colombia: morfodinámica y vulnerabilidad ante el Cambio Global. Primera Edición. Medellín, Colombia: EAFIT.
Restrepo, J. D., Zapata, P., Díaz, J. M., Garzón-Ferreira, J., & García, C. (2006). Fluvial fluxes into the Caribbean Sea and their impact on coastal ecosystems: The Magdalena River, Colombia. Global and Planetary Change, 50 (1, 2), 33-49. https://doi.org/10.1016/j.gloplacha.2005.09.002
Richardson, A. J., & Schoeman, D. S. (2004). Climate impact on plankton ecosystems in the Northeast Atlantic. Science, 305(5690), 1609-1612. DOI: 10.1126/science.1100958
Robson, B., Barmuta, L., & Fairweather, P. G. (2005). Methodological and conceptual issues in the search for a relationship between animal body-size distributions and benthic habitat architecture. Marine and Freshwater Research, 56(1), 1-11. DOI: 10.1071/MF04210
Schott, F., & Molinari, R. (1996). The western boundary circulation of the subtropical warmwatersphere. In W. Krauss (Ed.), The Warmwatersphere of the North Atlantic Ocean (pp. 229-252). Berlin: Gebrüder Bornträger.
Sheinbaum, J., Zavala, J., & Candela, J. (1997). Modelación numérica del Golfo de México y Mar Caribe. Contribuciones a la Oceanografía Física en México, Monografía, 3. 12, 243-264.
Shin, Y. J., Rochet, M., Jennings, J. S., Field, J. G., & Gislason, H. (2005). Using size-based indicators to evaluate the ecosystem effects of fishing. ICES Journal of Marine Science: Journal du Conseil, 62(3), 384-396.
Taylor, G. T., Muller-Karger, F. E., Thunell, R. C., Scranton, M. I., Astor, Y., Varela, R., Troccoli, L., Lorenzoni, … Doherty, O. (2012). Ecosystem responses in the southern Caribbean Sea to global climate change. Proceedings of the National Academy of Sciences, 109(47), 19315-19320. doi: 10.1073/pnas.1207514109
Taylor, L. R. (1961). Aggregation, Variance and the Mean. Nature, 189(4766), 732-735. http://dx.doi.org/10.1038/189732a0.
Verheye, H., Hutchings, L., Huggett, J., & Painting, S. (1992). Mesozooplankton dynamics in the Benguela ecosystem, with emphasis on the herbivorous copepods. South African Journal of Science, 12, 561-584. http://dx.doi.org/10.2989/02577619209504725
Williams, R. (1988). Spatial heterogeneity and niche differentiation in oceanic zooplankton. Hydrobiologia, 167(1), 151-159. DOI: 10.1007/BF00026301
Wüst, G. (1964). Stratification and circulation in the Antillean-Caribbean basins. New York, EE.UU: Columbia University Press.
##plugins.facebook.comentarios##
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright (c) 2018 Revista de Biología Tropical