Revista de Biología Tropical ISSN Impreso: 0034-7744 ISSN electrónico: 2215-2075

OAI: https://revistas.ucr.ac.cr/index.php/rbt/oai
Reintroducing plant coverage in a tropical wetland contaminated with oil and sulfate: rhizosphere effects on Desulfovibrio populations
PDF
HTML

Keywords

bacteria
Gleysol
Eleocharis
Leersia
weathered petroleum.

How to Cite

Trujillo-Narcía, A., Rivera-Cruz, M. del C., Trujillo-Rivera, E. A., & Roldán Garrigos, A. (2018). Reintroducing plant coverage in a tropical wetland contaminated with oil and sulfate: rhizosphere effects on Desulfovibrio populations. Revista De Biología Tropical, 66(2), 908–917. https://doi.org/10.15517/rbt.v66i2.33422

Abstract

The Mexican tropical wetland is a coastal system with capacity to support the contamination derived from the extractive industry and the transformation of crude oil, due to its high plant biodiversity and the presence of rhizospheric reducing sulphate bacteria from plants tolerant to crude oil. A field experiment was carried out for nine months to evaluate the adaptation of aquatic plants Leersia hexandra grass and Eleocharis palustris spikerush reintroduced in a wetland contaminated with 75 560 to 118 789 mg kg-1 of weathered petroleum and also with sulfate, derived from oil and gas pipeline leaks, and gaseous emissions. The effect of the weathered oil and sulfate on the dry matter production and the population density of the bacterium Desulfovibrio spp, isolated from the rhizosphere and soil of both plants, were evaluated. The means of the variables had statistical differences (p< 0.05). Weathered oil inhibited dry matter production of L. hexandra but not E. palustris; the effect of petroleum on Desulfovibrio density was very significant negative in the rhizosphere and in the soil of both plants. Sulfate reduced the dry matter of grass. The exposure of Desulfovibrio to sulfate significantly reduced its density in rhizosphere and soil (p< 0.01). We recommend the use of E. palustris for the decontamination of flooded soils contaminated with weathered oil and sulfate. Rev. Biol. Trop. 66(2): 908-917. Epub 2018 June 01.

 

https://doi.org/10.15517/rbt.v66i2.33422
PDF
HTML

References

Alexander, M. (1994). Introducción a la Microbiología del Suelo (2a. reimp.). México: AGT Editor, S.A.

Aprill, W., & Sims, R. C. (1990). Evaluation of the use of prairie grasses for stimulating polycyclic aromatic hydrocarbon treatment in soil. Chemosphere, 20(1-2), 253-265.

ASTM. (2009). D4412-84, Standard Test Methods for Sulfate-Reducing Bacteria in Water and Water-Formed Deposits. West Conshohocken, PA: ASTM International.

Atlas, R. M., & Bartha, R. (2002). Ecología Microbiana y Microbiología Ambiental (4a. ed.) España: Pearson Educación.

Babu, P. G., Subramanyam, P., Sreenivasulu, B., & Paramageetham, Ch. (2014). Isolation and identification of sulfate reducing bacterial strains indigenous to sulphur rich barite mines. International Journal of Current Microbiology and Applied Sciences, 3(7), 788-793.

Badalucco, L., & Kuikman, J. P. (2001). Mineralization and Immobilization in the Rhizosphere. In R. Pinto, Z. Varanini, & P. Nannipieri (Eds.), The Rhizosphere: Biochemistry and Organic Substances at the Soil-Plant Interface (pp. 159-196). New York: CRC Press.

Baker, J. M. (1971). Growth stimulation following oil pollution. In E. B. Cowell (Ed.), The Ecological Effects of Oil Pollution on Littoral Communities (pp. 72-77). London: The Institute of Petroleum.

Basumatary, B., Bordoloi, S., & Sarma, P. H. (2012). Crude oil-contaminated soil phytoremediation by using Cyperus brevifolius (Rottb.) Hassk. Water Air and Soil Pollution, 223(6), 3373-3383.

Calabrese, E. J., Baldwin, L. A., & Holland, C. D. (1999). Hormesis: A highly generalizable and reproducible phenomenon with important implications for risk assessment. Risk Analysis, 19(2), 261-281.

Cochran, S. W. G. (1950). Estimation of bacterial densities by means of the “most probable number”. Biometrics, 6(2), 105-116.

CONABIO. (2009). Manglares de México: Extensión y distribución. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad. México: CONABIO.

Dzantor, E. K. (2007). Phytoremediation: the state of rhizosphere ‘engineering’ for accelerated rhizodegradation of xenobiotic contaminants. Journal of Chemical Technology and Biotechnology, 82(3), 228-232.

Erickson, L. E., Davis, L. C., & Narayanan, N. (1995). Bioenergetics and bioremediation of contaminated soil. Thermochimica Acta, 250(2), 353-358.

Etchevers, B. J. D. (1992). Manual de métodos para análisis de suelos, plantas agua y fertilizantes. Análisis rutinarios en estudios y programas de fertilidad. Montecillos. México: Laboratorio de Fertilidad, Centro de Edafología. Colegio de Postgraduados en Ciencias Agrícolas.

Fernández, L. J. C., Rojas, A. N. G., & Roldán, C. T. G. (2006). Manual de técnicas de análisis de suelos aplicadas a la remediación de sitios contaminados. México: Instituto Mexicano del Petróleo, Secretaría de Medio Ambiente y Recursos Naturales, Instituto Nacional de Ecología.

García, C., Moreno, D. A., Ballester, A., Blázquez, M. L., & González, F. (2001). Bioremediation of an industrial acid mine water by metal-tolerant sulfate-reducing bacteria. Minerals Engineering, 14(9), 997-1008.

Hansen, T. A. (1994). Metabolism of sulfate-reducing prokaryotes. Anton Leeuw Int JG, 66(1-3), 165-185.

Hauser, A. S. (2006). Eleocharis palustris. In Fire Effects Information System. Accessed 22.07.2017. S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). http://www.fs.fed.us/database/feis

Hou, Y., Liu, X., Zhang, X., Hu, X., & Cao, L. (2016). Rhizosphere phytoremediation with Cyperus rotundus for diesel-contaminated wetlands. Water Air and Soil Pollution, 227(1), 26.

Hurst, C. J. (2002). An introduction to viral taxonomy and the proposal of Akamara, a potential domain for the genomic a cellular agents. In C. J. Hurst (Ed.), Viral Ecology (pp. 41-62). USA, San Diego: Academic Press.

Instituto Nacional de Estadística y Geología [INEGI]. (2001). Síntesis de Información Geográfica del Estado de Tabasco (1a. ed.). México: Instituto Nacional de Estadística y Geografía.

Liamleam, W., & Annachhatre, A. P. (2007). Electron donors for biological sulfate reduction. Biotechnology Advances, 25(5), 452-463.

Lynch, J. M., & Hobbie, J. E. (1988). Micro-organisms in Action: Concepts and Applications in Microbial Ecology. Oxford: Blackwell Scientific Publications.

Madigan, M. T., Martinko, J. M., Bender, K. S., Buckley, D. H., & Stahl, D. A. (2015). Brock. Biología de los microorganismos (14a. edición). España: Pearson Educación.

Martí, M. C., Camejo, D., Fernández-García, N., Rellán-Álvarez, R., Marques, S., Sevilla, F., & Jiménez, A. (2009). Effect of oil refinery sludges on the growth and antioxidant system of alfalfa plants. Journal of Hazardous Materials, 171(1-3), 879-885.

Merkl, N., Schultze-Kraft, R., & Infante, C. (2004). Phytoremediation in the tropics-The effect of crude oil on the growth of tropical plants. Bioremediation Journal, 8(3-4), 177-184.

Merkl, R. N., Schultze-Kraft, R., & Infante, C. (2005). Assessment of tropical grasses and legumes for phytoremediation of petroleum - contaminated soils. Water Air and Soil Pollution, 165(1-4), 195-209.

Muratova, A. Y., Dmitrieva, T. V., Panchenko, L. V., & Turkovskaya, O. V. (2008). Phytoremediation of oil-sludge-contaminated soil. International Journal of Phytoremediation, 10(6), 486-502.

Parés, I. F. R., & Juárez, G. A. (1997). Bioquímica de los microorganismos. España: Editorial Reverté, S.A.

Plice, M. J. (1949). Some effects of crude petroleum on soil fertility. Soil Science Society of America, 13(C), 413-416.

Rivera-Cruz, M. C. (2011). Bacterias y hongos en suelos contaminados con petróleo crudo en Tabasco. In M. A. Gamboa, & R. H. Rojas (Eds.), Recursos genéticos microbianos en la zona del Golfo-Sureste de México (pp. 77-96). México: Subsistema Nacional de Recursos Genéricos Microbianos (Subnargem), SAGARPA.

Rivera-Cruz, M. C., Trujillo-Narcía, A., Miranda de la, C. M. A., & Maldonado, C. E. (2005). Evaluación toxicológica de suelos contaminados con petróleo nuevo e intemperizado mediante ensayos con leguminosas. Interciencia, 30(6), 326-331.

Rivera-Cruz, M. C., Maldonado-Chávez, E., & Trujillo-Narcía, A. (2012). Effects of crude oil on the growth of Brachiaria mutica and Leucaena leucocephala and on soil and plant macronutrients. Tropical and Subtropical Agroecosystems, 15(SUP 2), S30-S39.

Rivera-Cruz, M. C., Trujillo-Narcía, A., Trujillo-Rivera, E. A., Arias-Trinidad, A., & Mendoza-López, M. R. (2016). Natural attenuation of weathered oil using aquatic plants in a farm in southeast Mexico. International Journal of Phytoremediation, 18(9), 877-884.

Sacaca, C. S., Iñiguez, R. V., & Roulet, M. (2009). Diversidad y distribución de bacterias sulfato reductoras en sedimentos de lagunas de la cuenca Milluni contaminada por desechos mineros. Biofarbo, 17(2), 39-50.

Santos, F. H., Carmo, L. F., Paes, S. E. J., Rosado, S. A., & Peixoto, S. R. (2011). Bioremediation of mangroves impacted by petroleum. Water Air and Soil Pollution, 216(1-4), 329-350.

SAS Institute Inc. (2000). The SAS System for Windows Release 8.01. [Computer software]. NC: SAS Institute Inc.

Tilley, D., & John, L. (2012). Plant Guide for common spikerush (Eleocharis palustris). USDA-Natural Resources Conservation Service, Aberdeen Plant Materials Center. Aberdeen, Idaho 83210. Recovered on 22.07.2017 from: https://www.nrcs.usda.gov/Internet/FSE_PLANTMATERIALS/publications/idpmcfs11627.pdf

USEPA. (1994). Test methods for evaluating solid and hazardous waste. Washington, DC.

Vaziri, A., Panahpour, E., & Mirzaee-Beni, M. H. (2013). Phytoremediation, a method for treatment of petroleum hydrocarbons contaminated soils. International Journal of Farming and Allied Sciences, 2(21), 909-913.

Wauquier, J. P. (2004). El refino de petróleo: Petróleo crudo, productos petrolíferos y Esquemas de Fabricación. México: Ediciones Díaz de Santos.

##plugins.facebook.comentarios##

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2018 Revista de Biología Tropical

Downloads

Download data is not yet available.