Revista de Biología Tropical ISSN Impreso: 0034-7744 ISSN electrónico: 2215-2075

OAI: https://revistas.ucr.ac.cr/index.php/rbt/oai
Morphological and biochemical changes during somatic embryogenesis in mahogany, Swietenia macrophylla (Meliaceae)
PDF
HTML

Keywords

histological observations
embryogenic callus
non embryogenic callus
phenolics
flavonoids
carbohydrates
plant growth regulators
análisis histológico
callo embriogénico
callo no embriogénico
fenoles
flavonoides
carbohidratos
reguladores de crecimiento vegetales

How to Cite

Gatica Arias, A., Vargas-Corrales, K., Benavides-Acevedo, M., Bolívar-González, A., Sanchéz-Chacón, E., García-Díaz, E., Delgado- Rodríguez, F., Weng Huang, N. T., Hegele, M., Wünsche, J.-N., & Valdez-Melara, M. (2019). Morphological and biochemical changes during somatic embryogenesis in mahogany, Swietenia macrophylla (Meliaceae). Revista De Biología Tropical, 67(3), 406–418. https://doi.org/10.15517/rbt.v67i3.34172

Abstract

Intensive exploitation of mahogany wood (Swietenia macrophylla, Meliaceae) has resulted in the loss of natural populations. Somatic embryogenesis offers an alternative to clonal propagation and conservation of mahogany. This study describes biochemical (carbohydrates, total phenols, total flavonoids, protein, and plant growth regulators content) and histological characteristics of the somatic embryogenesis process in mahogany. Calli were obtained by culturing cotyledons of seeds from immature fruits for six weeks on semi-solid MS medium supplemented with 1.0 mgL-1 of kinetin and 4.0 mgL-1 of 2, 4-D. Primary callus was cultured on half strength semi-solid MS medium supplemented with 1.0 mgl-1 6-BA (6-benzylaminopurine) and embryogenic structures were obtained. Embryo development from globular-shaped somatic embryos to the cotyledonary stage was confirmed by histology and scanning electron microscopy. Shoot initiation was observed after somatic embryos were transferred to germination and maturation medium. Endogenous concentrations of carbohydrates, total phenols, total flavonoids, protein, and plant growth regulators were determined in embryogenic (EC) and non-embryogenic (NEC) calli of mahogany. Embryogenic cultures contained significantly higher concentrations of IAA (indoleacetic acid), ABA (abscisic acid), and GAs (Gibberellins 1+3+20), whereas non-embryogenic calli contained more total phenols, flavonoids and resistant starch. Fructose and glucose were not present at detectable levels in EC or NEC, whereas soluble starch and sucrose were only detectable in EC. Concentrations of total proteins, Z/ZR (Zeatin/zeatin riboside) and iP/iPA (N6-(Δ2-isopentenyl) adenine and N6-(Δ2-isopentenyl) adenosine) were similar in EC and NEC.

https://doi.org/10.15517/rbt.v67i3.34172
PDF
HTML

References

Amin, M. (2012). In vitro propagation of Swietenia macrophylla King. Research Journal of Agriculture and Biological Sciences, 8, 282-287.

Azad, S., & Matin, A. (2015). Effect of Indole-3-Butyric Acid on clonal propagation of Swietenia macrophylla through branch cutting. Journal of Botany, 2015, 1-7. DOI: 10.1155/2015/249308

Bobo-García, G., Davidov-Pardo, G., Arroqui, C., Vírseda, P., Marín-Arroyo, M. R., & Navarro, M. (2015). Intra-laboratory validation of microplate methods for total phenolic content and antioxidant activity on polyphenolic extracts, and comparison with conventional spectrophotometric methods. Journal of the Science of Food and Agriculture, 5, 204-209.

Boissot, N., Valdez, M., & Guiderdoni, E. (1990). Plant regeneration from leaf and seed-derived calli and suspension cultures of the African perennial wild rice, Oryza longistaminata. Plant Cell Reports, 9, 447-450.

Branca, C., Torelli, A., Fermi, P., Altamura, M. M., & Bassi, M. (1994). Early phases in in vitro culture of tomato cotyledons: starch accumulation and protein pattern in relation to the hormonal treatment. Protoplasma, 182, 59-64.

Cameron, S. (2010). Plant regeneration in Spanish cedar, Cedrela odorata L., using zygotic embryo explants from mature seed and improvement of embryogenic nodule initiation by heat shock. In Vitro Cellular & Developmental Biology - Plant, 46, 126-133.

Cangahuala-Inocente, G. C., Steiner, N., Santos, M., & Guerra, M. P. (2004). Morphological analysis and histochemistry of Feijoa sellowiana somatic embryogenesis. Protoplasma, 224, 33-40.

Cangahuala-Inocente, G. C., Steiner, N., Maldonado, S. B., & Guerra, M. P. (2009). Patterns of protein and carbohydrate accumulation during somatic embryogenesis of Acca sellowiana. Pesquisa Agropecuária Brasileira, 44, 217-224.

Collado, R., Barbón, R., Agramonte, D., Jiménez-T, F., Pérez, M., & Gutiérrez, O. (2006). Embriogénesis somática directa en Swietenia macrophylla King. Biotecnología Vegetal, 6, 67-71.

Collado, R., Barbón, R., Agramonte, D., Jiménez-Terry, F., Pérez, M., & Gutiérrez, O. (2010). Indirect somatic embryogenesis of Swietenia macrophylla King in semisolid culture medium. Biotecnología Vegetal, 10, 177-184.

Goodhew, P. J., Humphreys, J., & Beanland, R. (2001). Electron microscopy and analysis. New York, USA: Taylor & Francis Inc.

Grzyb, M., Kalandyk, A., Waligórski, P., & Mikuła, A. (2017). The content of endogenous hormones and sugars in the process of early somatic embryogenesis in the tree fern Cyathea delgadii Sternb. Plant Cell Tissue Organ Culture, 129, 387-397.

Jiménez, V. M., Guevara, E., Herrera, J., & Bangerth, F. (2001). Endogenous hormone levels in habituated nucellar Citrus callus during the initial stages of regeneration. Plant Cell Reports, 10, 92-100.

Jiménez, V. M. (2001). Regulation of in vitro somatic embryogenesis with emphasis on the role of endogenous hormones. Revista Brasileira de Fisiologia Vegetal, 13, 196-223.

Jiménez, V. M., & Bangerth, F. (2001a). Endogenous hormone levels in explants and in embryogenic and non-embryogenic cultures of carrot. Physiologia Plantarum, 111, 389-395.

Jiménez, V. M., & Bangerth, F. (2001b). Hormonal status of maize initial explants and of the embryogenic and non-embryogenic callus cultures derived from them as related to morphogenesis in vitro. Plant Science, 160, 247-257.

Jiménez, V. M., & Bangerth, F. (2001c). Endogenous hormone concentrations and embryogenic callus development in wheat. Plant Cell Tissue Organ Culture, 67, 37-46.

Jiménez, V. M. (2005). Involvement of plant hormones and plant growth regulators on in vitro somatic embryogenesis. Plant Growth Regulation, 47, 91-110.

Lloyd, G., & McCown, B. H. (1980). Commercially feasible micropropagation of mountain laurel, (Kalmia latifolia) by use of shoot tip culture. International Plant Propagators' Society Combined Proceedings, 30, 421-427.

Loyola-Vargas, V. M. (2016). The history of somatic embryogenesis. In V. M. Loyola-Vargas, & N. Ochoa-Alejo (Eds.), Somatic embryogenesis: fundamental aspects and applications. Switzerland: Springer International Publishing AG.

Maadon, S., Rohani, E., Iismail, I., Baharum, S., & Normah, M. (2016). Somatic embryogenesis and metabolic differences between embryogenic and non-embryogenic structures in mangosteen. Plant Cell Tissue Organ Culture, 127, 443-459.

Maataoui, M., Espagnac, H., & Michaux-Ferriere, N. (1990). Histology of callogenesis and somatic embryogenesis induced in stem fragments of cork oak (Quercus suber) cultured in vitro. Annals of Botany, 66, 183-190.

Magalhães, L. M., Almeida, M. I. G. S., Barreiros, L., Reis, S., & Segundo, M. A. (2012). Automatic aluminum chloride method for routine estimation of total flavonoids in red wines and teas. Food Analytical Methods, 5, 530-539.

Martin, A. B., Cuadrado, Y., Guerra, H., Gallego, P., Hita, O., Martin, L., … Villalobos, N. (2000). Differences in the contents of total sugars, starch and sucrose in embryogenic and non-embryogenic calli from Medicago arborea L. Plant Science, 154, 143-151.

Maruyama, T. E. (2009). Polyethylene glicol improves somatic embryo maturation in big-leaf mahogany (Swietenia macrophylla King, Meliaceae). Bulletin of FFPRI, 8, 167-173.

Nascimento-Gavioli, M. C. A., Cangahuala-Inocente, G. C., Steinmacher, D., Ree, J. F., Steiner, N., & Guerra, M. P. (2017). Physiological and biochemical features of embryogenic and non-embryogenic peach palm (Bactris gasipaes Kunth) cultures. In Vitro Cellular & Developmental Biology - Plant, 53, 33-40.

Nieves, N., Segura-Nieto, M., Blanco, M., Sánchez, M., González, A., González, J., & Castillo, R. (2003). Biochemical characterization of embryogenic and non-embryogenic calluses of sugarcane. In Vitro Cellular & Developmental Biology - Plant, 39, 343-345.

Peña-Ramírez, T., García-Sheseña, I., Hernández-Espinoza, Á., Domínguez-Hernández, A., Barredo-Pool, F., Gonzáles-Rodríguez, J., & Robert, M. (2011). Induction of somatic embryogenesis and plant regeneration in the tropical timber tree Spanish red cedar [Cedrela odorata L. (Meliaceae)]. Plant Cell Tissue Organ Culture, 105, 203-209.

Pérez-Flores, J., Aguilar-Vega, M., & Roca-Tripepi, R. (2012). Assays for the in vitro establishment of Swietenia macrophylla and Cedrela odorata. Revista Colombiana de Biotecnología, 14, 20-30.

Potchanasin, P., Sringarm, K., Sruamsiri, P., & Bangerth, K. F. (2009). Floral induction (FI) in longan (Dimocarpus longan, Lour.) trees: Part I. Low temperature and potassium chlorate effects on FI and hormonal changes exerted in terminal buds and sub-apical tissue. Scientia Horticulturae, 122, 288-294.

Rodríguez, A. P. M., & Wetzstein, H. Y. (1998). A morphological and histological comparison of the initiation and development of pecan (Carya illinoinensis) somatic embryogenesis cultures induced with naphthaleneacetic acid or 2,4-dichlorophenoxyacetic acid. Protoplasma, 204, 71-83.

Sandoval, E. (2005). Técnicas aplicadas al estudio de la anatomía vegetal. México D.F: Universidad Nacional Autónoma de México.

Silva, G. M., Cruz, A. C. F., Otoni, W. C., Pereira, T. N. S., Rocha, D. I., & Silva, M. L. (2015). Histochemical evaluation of induction of somatic embryogenesis in Passiflora edulis Sims (Passifloraceae). In Vitro Cellular & Developmental Biology - Plant, 51, 539-545.

Vila, S., González, A., Rey, H., & Mroginski, L. (2009). Somatic embryogenesis and plant regeneration in Cedrela fissilis. Biologia Plantarum, 53, 383-386.

Warchoł, M., Skrzypek, E., Kusibab, T., & Dubert, F. (2015). Induction of somatic embryogenesis and biochemical characterization of Cordyline australis (G. Forst.) Endl. ‘Red Star’ callus. Scientia Horticulturae, 192, 338-345.

Weiler, E. W. (1980). Radioimmunoasssay for differential and direct analysis of free and conjugated abscisic acid in plant extracts. Planta, 148, 262-272.

Yeung, E. (1999). The use of histology in the study of plant tissue culture systems-Some practical comments. In Vitro Cellular & Developmental Biology - Plant, 35, 137-143.

##plugins.facebook.comentarios##

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2019 Andrés Gatica Arias, Kaliana Vargas-Corrales, Miguel Benavides-Acevedo, Alejandro Bolívar-González, Ethel Sanchéz-Chacón, Elmer García-Díaz, Fabián Delgado- Rodríguez, Nien Tzu Weng Huang, Martin Hegele, Jens-Norbert Wünsche, Marta Valdez-Melara

Downloads

Download data is not yet available.