Abstract
Tree density, species richness, and composition drive vegetation patches identified from remotely-sensed data in a semi evergreen tropical forest. A proposal for characterizing habitat of forests, obtained from an object-oriented classification of RapidEye multiespectral imagery, based on dissimilarity matrices of vegetation structure, species diversity and composition is presented. The study area is a forested landscape mosaic after slash and burn agriculture (Ac: 8-23 years ago), selective logging (Fs: 43-53 years ago), and selective logging and forest fire (Fc: 21-28 years ago). The site is located in the central part of Quintana Roo, México, where three vegetation patches were delineated according to remotely sensed multiespectral imagery. Mean differences between vegetation structure properties of each vegetation patch were obtained through a permutational multivariate analysis of variance (P < 0.001). Species richness, stem density per hectare, and the axis-1 scores of the non-metric multidimensional scaling ordination of specific composition were identified as the vegetation attributes more relevant to differentiate the vegetation patches by a multinomial logistic model. Fc vegetation patch is characterized by the greatest mean values on Shannon-Wiener index, species richness, and stem density. The Fs has the greatest mean values of canopy height, basal area, and biomass at 80 percentile, and the Ac vegetation patch has the lowest values of all mentioned metrics. The species with the greatest relative importance value were: Ac: Bursera simaruba and Psidia psipula, Fs: Gymnanthes lucida and Manilkara zapota, Fc: G. lucida and B. simaruba. The uncertainty associated with the metrics assessed by vegetation patch was smaller than the uncertainty of the whole area, because of the efficient variability aggregation of the field data. We conclude that multiespectral information is a reliable tool for distinguishing vegetation patches with specific features, as stem density, specific composition, and species richness.
References
Anderson, M. (2005). Permutational multivariate analysis of variance (Tech. Rep.). Auckland, NZ: University of Auckland, Department of Statistics.
Anderson, M. (2006). Distance-based tests for homogeneity of multivariate dispersions. Biometrics, 62, 245-253.
Anderson, M., & Walsh, D. (2013). PERMANOVA, ANOSIM, and the mantel test in the face of het-erogeneous dispersions: What null hypothesis are you testing? Ecological Monographs, 83(4), 557-574.
Asaad, I., Lundquist, C. J., Erdmann, M. V., & Costello, M. J. (2016). Ecological criteria to identify areas for biodiversity conservation. Biological Conservation, 213, 309-316.
Baatz, M., & Schäpe, A. (2000). Multiresolution segmentation: an optimization approach for high quali-ty multi-scale image segmentation. In J. Strobl, T. Blaschke, & G. Griesbner (Eds.), Angewandte Geog-raphische Informations Verarbeitung XII (pp. 12-23). Germany: Wichmann Verlag.
Báez-Vargas, A. M., Esparza-Olguín, L., Martínez-Romero, E., Ochoa, S., Ramírez-Marcial, N., & González-Valdivia, N. A. (2017). Efecto del manejo sobre la diversidad de árboles en vegetación se-cundaria en la Reserva de la Biosfera de Calakmul, Campeche, México. Revista de Biología Tropical, 65, 41-53.
Batterman, S. A., Hedin, L. O., Breugel, M. V., Ransijn, J., Craven, D. J., & Hall, J. S. (2013). Key role of symbiotic dinitrogen fixation in tropical forest secondary succession. Nature, 502, 224-227.
Bautista, F., Palacio, G., Ortiz-Pérez, M., Batllori-Sampedro, E., & Castillo-González, M. (2005). El origen y el manejo maya de las geoformas, suelos y aguas en la Península de Yucatán. En F. Bautista & G. Palacio (Eds.), Caracterización y manejo de los suelos de la Península de Yucatán: Implicaciones agropecuarias, forestales y ambientales (pp. 21-32). Campeche, México: Universidad Autónoma de Campeche, Universidad Autónoma de Yucatán, Instituto Nacional de Ecología.
Borcard, D., Gillet, G. F., & Legendre, P. (2011). Numerical ecology with R. New York, USA: Spring-er.
Bray, J. R., & Curtis, J. T. (1957) An ordination of the upland forest communities of Southern Wiscon-sin. Ecological Monographs, 27, 325-349.
Cairns, M., Olmsted, I., Granados, J., & Argaez, J. (2003). Composition and aboveground tree biomass of a dry semi-evergreen forest on Mexico’s Yucatan Peninsula. Forest Ecology and Management, 186, 125-132.
Carreño-Rocabado, G., Peña-Claros, M., Bongers, F., Licona, J. C., & Poorter, L. (2012). Effects of disturbance intensity on species and functional diversity in a tropical forest. Journal of Ecology, 100, 1453-1463.
CBD (Convention on Biological Diversity). (2010). Strategic Plan for Biodiversity 2011-2020 and the Aichi Targets. Canadá: United Nations. Recuperado de https://www.cbd.int/sp/default.shtml
Carreón-Santos, R. J., & Valdez-Hernández, J. I. (2014). Estructura y diversidad arbórea de vegetación secundaria derivada de una selva mediana subperennifolia en Quintana Roo. Revista Chapingo Serie Ciencias Forestales y del Ambiente, 20, 119-130.
Chan-Dzul, A. M. (2010). Diversidad florística y funcional a través de una cronosecuencia de la selva mediana subperennifolia en la zona de influencia de la Reserva de la Biosfera Calakmul, Campeche, México (Tésis de Maestría). Centro Agronómico Tropical de Investigación y Enseñanza, Costa Rica.
Chave, J., Condit, R., Lao, S., Caspersen, J. P., Foster, R. B., & Hubell, S. P. (2003). Spatial and tem-poral variation of biomass in a tropical forest: results from a large census plot in Panama. Journal of Ecology, 91, 240-252.
Chazdon, R. L., Broadbent, E. N., Rozendaal, D. M. A., Bongers, F., María, A., Zambrano, A., . . . Steininger, M. K. (2016). Carbon sequestration potential of second-growth forest regeneration in the Latin American tropics. Science Advances, 2(5), e1501639.
Chuvieco-Salinero, E. (2008). Teledetección ambiental (3ra ed.). Barcelona, España: Ariel Ciencias.
CONABIO (Comisión Nacional para el Conocimiento y Uso de la Biodiversidad). (2016). Estrategia nacional sobre biodiversidad de México y plan de acción 2016 2030. Ciudad de México: Comisión Na-cional para el Conocimiento y Uso de la Biodiversidad.
CONAFOR (Comisión Nacional Forestal). (2010). Inventario nacional forestal y de suelos México 2004-2009 (Reporte Técnico). Jalisco, México: Comisión Nacional Forestal.
Crowther, T. W., Glick, H. B., Covey, K. R., Bettigole, C., Maynard, D. S., Thomas, S. M.,. . . Brad-ford, M. A. (2015). Mapping tree density at a global scale. Nature, 525(7568), 201-205.
Delaney, M., Brown, S., & Powell, M. (1999). Carbon-offset report for the Noel Kempff climate action project, Bolivia (Reporte Técnico). Airlington, VA: Nature Conservancy.
Derroire, G., Balvanera, P., Castellanos-Castro, C., Decocq, G., Kennard, D. K., Lebrijatrejos, E., . . . Healey, J. R. (2016). Resilience of tropical dry forests – a meta analysis of changes in species diversity and composition during secondary succession. Oikos, 125, 1386-1397.
Dupuy, J. M., Hernández-Stefanoni, J. L., Hernández-Juárez, R., Tetetla-Rangel, E., López-Martínez, J. O., Leyequién-Abarca, E., . . . May-Pat, F. (2012). Patterns and correlates of tropical dry forest struc-ture and composition in a highly replicated chronosequence in Yucatan, Mexico. Biotropica, 44(2), 151-162.
Egler, F. (1954). Vegetation science concepts. Initial floristic composition, a factor in old-field vegeta-tion development. Vegetation, 4, 412-417.
ENAIPROS (Estrategia Nacional de Incremento a la Producción Sustentable). (2013). Estrategia na-cional de manejo forestal sustentable para el incremento de la producción y productividad. 2013-2018 (Reporte Técnico). Jalisco, México: Comisión Nacional Forestal.
EEA (European Environment Agency). (2014). Terrestral habitat mapping in Europe: an overview (Re-porte Técnico). Copenhagen, Denmark: Muséum National d'Histoire Naturelle- European Environment Agency. Recuperado de https://www.eea.europa.eu/publications/terrestrial-habitat-mapping-in-europe.
Finegan, B. (1996). Pattern and process in neotropical secondary rain forests: The first 100 years of suc-cession. Trends in Ecology & Evolution, 11, 119-124.
Flashenberg, H., & Galleti, H. A. (1999). El manejo forestal de la selva en Quintana Roo, México. In La selva maya, conservación y desarrollo. México: Siglo XXI.
Fox, J., Weisberg, S., Price, B., Adler, D., Bates, D., Baud-Bovy, G., . . . Winsemius, D. (2018). Com-panion to Applied Regression: car. R package version 3.0-0. Recuperado de https:// cran.r-project.org/package=car
Fujiki, S., Okada, K. I., Nishio, S., & Kitayama, K. (2016). Estimation of the stand ages of tropical secondary forests after shifting cultivation based on the combination of WorldView-2 and time-series Landsat images. ISPRS Journal of Photogrammetry and Remote Sensing, 119(11), 280-293.
Gallardo-Cruz, J. A., Hernández-Stefanoni, J. L., Moser, D., Martínez-Yrizar, A., Llobet, S., & Meave, J. (2018). Relating species richness to the structure of continuous landscapes: alternative methodologi-cal approaches. Ecosphere, 9(5), 1-15.
Gallardo-Cruz, J. A., Meave, J. A., González, E. J., Lebrija-Trejos, E. E., Romero-Romero, M. A., Pé-rez-García, E. A., . . . Martorell, C. (2012). Predicting tropical dry forest successional attributes from space: Is the key hidden in image texture? PLoS ONE, 7(2), 38-45.
García Enriqueta (1990). Climas, 1: 4000 000. IV.4.10. Atlas Nacional de México (Vol. II). México: Instituto de Geografía, UNAM.
Garshelis, D. L. (2000). Delusions in habitat evaluation: Measuring use, selection, and importance. In L. Boitani & T. K. Fuller (Eds.), Research techniques in animal ecology, controversies and consequences (pp. 111-164). New York: Columbia University.
Gei, M., Rozendaal, D. M. A., Poorter, L., Bongers, F., Sprent, J. I., Garner, M. D., . . . Powers, J. S. (2018). Legume abundance along successional and rainfall gradients in neotropical forests. Nature Eco-logy & Evolution, 2(5), 1-10.
George-Chacón, S. P. (2017). Modelización de la diversidad de especies de plantas leñosas en bosques tropicales secos mediante imágenes de alta resolución y datos LiDAR (Tesis de Maestría). Centro de Investigación Científica de Yucatán, A. C., México.
Gómez-Pompa, A. (1987). On Maya Silviculture. Estudios mexicanos, 3(1), 1-17.
Granados-Victorino, R. L., Sánchez-González, A., Martínez-Cabrera, D., & Octavio-Aguilar, P., (2017). Estructura y composición arbórea de tres estadios sucesionales de selva mediana subperennifolia del municipio de Huautla, Hidalgo, México. Revista Mexicana de Biodiversidad, 88(1), 122-135.
Guevara-Sada, S., Laborde-Dovalí, J., & Sánchez-Ríos, G. (2005). Los árboles que la selva dejó atrás. Interciencia, 30(10), 595-601.
Gutiérrez-Granados, G., Pérez-Salicrup, D., & Dirzo, R. (2011). Differential diameter size effects of forest management on tree species richness and community structure: Implications for conservation. Biodiversity Conservation, 20, 1571-1585.
Hakkenberg, C. R., Peet, R. K., Urban, D. L., & Song, C. (2018a). Modeling plant composition as community continua in a forest landscape with LiDAR and hyperspectral remote sensing. Environmen-tal Applications, 28(1), 177-190.
Hakkenberg, C. R., Zhu, K., Peet, R. K., & Song, C. (2018b). Mapping multi-scale vascular plant rich-ness in a forest landscape with integrated LiDAR and hyperspectral remote sensing. Ecology, 99(2), 474-487.
Hernández-Stefanoni, J. L., Dupuy, J. M., Johnson, K. D., Birdsey, R., Tun-Dzul, F., Peduzzi, A., . . . López-Merlín, D. (2014). Improving species diversity and biomass estimates of tropical dry forests us-ing airborne LiDAR. Remote Sensing, 6, 4741-4763.
Hernández-Stefanoni, J. L., Dupuy, J. M., Tun-Dzul, F., & May-Pat, F. (2010). Influence of landscape structure and stand age on species density and biomass of a tropical dry forest across spatial scales. Landscape Ecology, 26, 355-370.
Ichter, J., Savio, L., Evans, D., & Poncet, L. (2017). State-of-the-art of vegetation mapping in Europe: results of a European survey and contribution to the French program CarHAB. Prodrome et car-tographie des végétations de France, 6, 335-351.
Imai, N., Tanaka, A., Samejima, H., Baptist, J., Pereira, J. T., Titin, J., & Kitayama, K. (2014). Tree community composition as an indicator in biodiversity monitoring of REDD +. Forest Ecology and Management, 313, 169-179.
Iqbala, M., Khanb, S. M., Khanc, M. A., Ahmadb, Z., & Ahmadd, H. (2018). A novel approach to phy-tosociological classification of weeds flora of an agroecological system through cluster and indicator species analyses. Ecological Indicators, 84, 593-606.
Jardel-Peláez, E. J. (2015). Guía para la caracterización y clasificación de hábitats forestales. Jalisco, México: Comisión Nacional Forestal.
Kirk, D. A., Park, A. C., Smith, A. C., Howes, B. J., Prouse, B. K., Kyssa, N. G., & Prior, K. A. (2018). Our use, misuse, and abandonment of a concept: Whither habitat? Ecology and Evolution, 8, 4197-4208.
Knipling, E. B. (1970). Physical and physiological basis for the reflectance of visible and near-infrared radiation from vegetation. Remote Sensing of Environment, 1, 155-159.
Korom, A., Mui-How, P., Wong, W., Matsuura, T., Saito, H., & Hirata, Y. (2016). Exploring forest degradation: Tree density and aboveground biomass. Paper presented at the 37th Asian Conference on Remote Sensing, At Colombo, Sri Lanka.
Kruskal, J. B. (1964). Nonmetric multidimensional scaling. Psychometrika, 29(3), 1-27.
Lausch, A., Bannehr, L., Beckmann, M., Boehm, C., Feilhauer, H., Hacker, J. M., & Rocchini, D. (2016). Linking earth observation and taxonomic, structural and functional biodiversity: Local to eco-system perspectives. Ecological Indicators, 70, 317-339.
Legendre, P., & Legendre, L. (1998). Numerical Ecology. Amsterdam: Elsevier.
Letcher, S. G., Lasky, J. R., Chazdon, R. L., Norden, N., Wright, J., Romero-Pérez, E., & Williamson, G. B. (2015). Environmental gradients and the evolution of successional habitat specialization: a test case with 14 Neotropical forest sites. Journal of Ecology, 103, 1276-1290.
Liu, D., & Xia, F. (2010). Assessing object-based classification: Advantages and limitations. Remote Sensing Letters, 1(4), 187-194.
Liu, Y., Gong, W., Hu, X., & Gong, J. (2018). Forest type identification with random forest using Sen-tinel-1A, Sentinel-2A, multi-temporal Landsat-8 and DEM data. Remote Sensing, 10(949), 1-25.
Machala, M., & Zejdová, L. (2017). Forest mapping through object-based image analysis of multispec-tral and LiDAR Aerial Data. European Journal of Remote Sensing, 47, 117-131.
Martínez-Sánchez, J. L. (2016). Comparación de la diversidad estructural de una selva alta perennifolia y una mediana subperennifolia en Tabasco, México. Madera y Bosques, 22(2), 29-40.
McRoberts, R. E., Tomppo, E. O., & Czaplewski, R. (2015). Sampling designs for national forest as-sessments. In knowledge reference for national forest assessments (pp. 23-40). Rome: Food and Agricul-ture Organization of the United Nations.
Miles, L., Newton, A., Defries, R., Ravilious, C., May, I., Blyth, S., & Gordon, J. (2006). A global overview of the conservation status of tropical dry forests. Journal of Biogeography, 33, 491-505.
Mueller-Dombois, D., & Ellenberg, H. (1974). Aims and methods of vegetation ecology. New York, USA: John Wiley and Sons.
Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., Mcglinn, D., & Wagner, H. (2018). Vegan: Community ecology package. R package version 2.5.1. Recuperado de https://github.com/vegandevs/vegan
Pasher, J., & King, D. J. (2010). Multivariate forest structure modelling and mapping using high resolu-tion airborne imagery and topographic information. Remote Sensing of Environment, 114(8), 1718-1732.
Pereira, H. M., Ferrier, S., Walters, M., Geller, G. N., Jongman, R. H., Scholes, R. J., & Wegmann, M. (2013). Essential biodiversity variables. Science, 339(6117), 277-278.
Planet. (2016). RapidEye TM. Imagery product specifications (Tech. Rep.). Brandenburg, Germany: Blackbridge Rapideye.
Prieto, P. V., Seger, G. D. S., Sánchez-Tapia, A., Sansevero, J. B. B., Braga, J. M. A., & Rodrigues, P. J. F. P. (2017). Secondary succession and fire disturbance promote dominance of a late-diverging tree lineage in a lowland neotropical forest. Plant Ecology & Diversity, 10(4), 311-322.
R Core Team. (2016). R: A Language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Recuperado de https://www.r-project.org/
Ripley, B., & Venables, W. (2016). nnet: Feed-forward neutral networks and multinomial log-linear models. R package version 7.3-12. Recuperado de http://www.stats.ox.ac.uk/pub/MASS4/NeedsCompilation.
Román-Dañobeytia, F. J., Levy-Tacher, S. I., Macario-Mendoza, P., & Zúñiga-Morales, J. (2014). Re-defining secondary forests in the Mexican forest code: Implications for management, restoration, and conservation. Forests, 5, 978-991.
Sánchez-Sánchez, O., Islebe, G. A., & Valdez Hernández, M. (2007). Flora arbórea y caracterización de gremios ecológicos en distintos estados sucesionales de la selva mediana de Quintana Roo. Foresta Ve-racruzana, 9(2), 17-26.
Sánchez-Santos, G., Arreola-Palacios, J. A., López-Merlín, D., Maldonado-Montero, V., Olguín-Álvarez, M., Carrillo-Negrete, O., & Puc-Kauil, R. (2015). Sitio de monitoreo intensivo del Carbono en Quintana Roo (Reporte Técnico). México: Comisión Nacional Forestal.
Slik, J. W. F., Arroyo-Rodríguez, V., Aiba, S. I., Álvarez-Loayza, P., Alves, L. F., Ashton, P., & Zang, R. (2015). An estimate of the number of tropical tree species. Proceedings of the National Academy of Sciences of the United States of America, 112(24), 7472-7477.
Solórzano, J., Meave, J. A., Gallardo-Cruz, A., González, E. J., & Hernández-Stefanoni, J. L. (2017). Predicting old-growth tropical forest attributes from very high resolution (VHR) derived surface met-rics. International Journal of Remote Sensing, 38(2), 492-513.
Spies, T. (1998). Forest Structure: A Key to the Ecosystem. Northwest Scientific Association, 72(2), 34-39.
Sterenczak, K., Lisanczuk, M., & Erfanifard, Y. (2018). Delineation of homogeneous forest patches using combination of field measurements and LiDAR point clouds as a reliable reference for evaluation of low-resolution global satellite data. Forest Ecosystems, 5(1), 1-12.
The Plant List. (2013). A working list of all known plant species, version 1. Recuperado de www.theplantlist.org/1/.
Trimble. (2014). eCognition developer 9.0. Reference book. München, Germany: Trimble Germany GmbH.
Tropicos. (2013). Missouri Botanical Garden electronic databases. Recuperado de https://www.tropicos.org/
Urquiza-Haas, T., Dolman, P. M., & Peres, C. A. (2007). Regional scale variation in forest structure and biomass in the Yucatan Peninsula, Mexico: Effects of forest disturbance. Forest Ecology and Manage-ment, 247, 80-90.
Venables, W. N., & Ripley, B. D. (2002). Modern applied statistics with S (Fourth ed.). New York: Springer.
Wiggins, H. L. (2017). The influence of tree height on LiDAR’s ability to accurately characterize forest structure and spatial pattern across reference landscapes (Tésis de Maestría). University of Montana, Missoula, EE.UU.
Zhang, Y., & Chen, H. Y. H. (2015). Individual size inequality links forest diversity and above-ground biomass. Journal of Ecology, 103, 1245-1252.
Comments
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright (c) 2019 Alejandra del Pilar Ochoa-Franco, José René Valdez-Lazalde, Héctor Manuel de los Santos-Posadas, José Luis Hernández-Stefanoni, Juan Ignacio Valdez-Hernández, Gregorio Ángeles-Pérez