Abstract
Benthic microalgae have the natural capacity to adhere to a diversity of fixed submerged substrates to form biofilms, which have important roles not only in natural ecosystems, but also in aquaculture systems. An experimental investigation was performed to assess the biofilm-forming capacity of two microalgae (Navicula incerta and Navicula sp.) on three different substrates (plastic net, fabric, and wood) under controlled temperature and light conditions. The substrates were arranged on curtains suspended from a wood stick, into plastic aquariums (45 L in capacity) filled with filtered marine water enriched with F/2 medium. The trial was carried out until the exponential growing phase of the microalgae was reached. After that, the incorporated biomass was gravimetrically calculated, and its biochemical composition was determined by standard methods. The greatest amount of incorporated dry matter was observed for Navicula sp. on fabric and the lowest was observed for wood. The highest number of cells associated with the biofilm was obtained for Navicula sp. on the plastic net (1.24 x 109 cells/m2), while the lowest was recorded for Navicula sp. on the wood (1.43 x 108 cells/m2). Significant differences in organic matter were found among the substrates, with the highest values for N. incerta on the fabric (3.22 g/m2) and the lowest for Navicula sp. on the wood (0.02 g/m2). The best biochemical profiles among the formed biofilms were observed for N. incerta on the plastic net and Navicula sp. on the fabric. The plastic net was considered the best substrate because of the stability of the biofilm and the easiness of harvesting the biomass.
References
Azam, F., Fenchel, T., Field, J. G., Gray, J. S., Meyer-Reil, L. A., & Thingstad, F. (1983). The ecological role of water-column microbes in the sea. Marine Ecology Progress Series, 10, 257-263.
Azim, M. E., Verdegem, M. C. J., Khatoon, H. M., Wahab, A., van Dam, A. A., & Beveridge, M. C. M. (2002). A comparison of fertilization, feeding and three periphyton substrates for increasing fish production in freshwater pond aquaculture in Bangladesh. Aquaculture, 212, 227-243.
Babu, M. (2011). Effect of Algal Biofilm and Operational conditions on Nitrogen removal in Wastewater Stabilization Ponds (PhD dissertation). Wageningen University, Wageningen, Netherlands.
Barranguet, C., Veuger, B., Van Beusekom, S. A. M., Marvan, P., Sinke, J. J., & Admiraal, W. (2005). Divergent composition of algal-bacterial biofilms developing under various external factors. European Journal of Phycology, 40(1), 1-8.
Brown, M. R., Jeffrey, S. W., Volkman, J. K., & Dunstan, G. A. (1997). Nutritional properties of microalgae for mariculture. Aquaculture, 151, 315-331.
Cabello-Paisini, P., Macias, C. A., Abdala, V., Korbee, R. N., & Figueroa, F. L. (2011) Effect of nitrate concentration and UVR on photosynthesis, respiration, nitrate reductase activity, and phenolic compounds in Ulvarigida (Chlorophyta). Journal of Applied Phycology, 23, 363-369.
Christenson, L. B., & Sims, R. C. (2012). Rotating algal biofilm reactor and spool harvester for wastewater treatment with biofuels by-products. Journal Bioengineering Biotechnology, 109, 1674-1684.
Courtois, de V. G., Porta, A., Viera, M. P., Fernández, P., & Izquierdo, M. S. (2012). Effects of density on growth rates for four benthic diatoms and variations in biochemical composition associated with growth phase. Journal of Applied Phycology, 24, 1427-1437.
Danilov, R. A., & Ekelund, N. G. A. (2001). Comparison of usefulness of three types of artificial substrata (glass, wood and plastic) when studying settlement patterns of periphyton in lakes of different trophic status. Journal Microbiology Methods, 45, 167-170.
Dang, H., & Lovell, C. R. (2016). Microbial surface colonization and biofilm development in marine environments. Microbiology and Molecular Biology Reviews, 80, 91-138.
Decho, A.W. (2000). Microbial biofilms in intertidal systems: an overview. Continental Shelf Research, 20, 1257-1273.
Dobretsov, S. (2010). Marine Biofilms. In S. Dürr, & J. C. Thomason (Eds.), Biofouling (pp. 123-136). Oxford, UK: Wiley-Blackwell, Ltd.
Fernandes, D. S. C., Ballester, E., Monserrat, J., Geracitano, L., Wasielesky, W., & Abreu, P. C. (2008). Contribution of microorganisms to the biofilm nutritional quality: protein and lipid con- tents. Aquaculture Nutrition, 14, 507-514.
Ferreira, M. H., Lara, G., Wilson, W. Jr., & Abreu, P. C. (2016). Biofilm versus biofloc: Are artificial substrates for biofilm production necessary in the BFT system? Aquaculture International, 24, 921-930.
Fimbres-Olivarría, D. (2011). Evaluación del crecimiento, biomasa y producción de carotenoides de Dunaliella sp. a diferentes concentraciones de nitrógeno (Tesis Maestría). Universidad de Sonora, México.
Fimbres-Olivarría, D., López, E. J. A., Martínez, C. L. R., Carvajal, M. E., Enríquez, O. L. F., Valdéz, H. E., & Miranda, B. A. (2015). Growth and biochemical composition of Navicula sp. cultivated at two light intensities and three wavelengths. Bamidgeh, 67, 1-7.
Flores-Vergara, C. (1998). Crecimiento y composición bioquímica de microalgas bentónicas cultivado bajo diferentes condiciones de temperatura e intensidades de luz (Tesis Maestría). Centro de Investigación Científica y de Educación Superior de Ensenada, México.
Gatune, C., Vanreusel, A., & De Torch, M. (2017). Sunlight and sediment improve the environment of a litter biofilm-based shrimp culture system. Aquaculture Environment Interactions, 9, 73-85.
Guillard, R. R. L., & Ryther, J. H. (1962). Studies on marine planktonic diatoms I. Cyclotella nana (Husted) and Denotula confervacea (Cleve). Canadian Journal of Microbiology, 8, 229-239.
Hashimoto, K., Vasquez, H. E., Kitamura, H., & Satuito, C. G. (2016). Variation in the abundance of periphytic algae in marine biofilms on glass surfaces submerged in the sea off Shin-Nagasaki Port, Nagasaki, Japan. Sessile Organisms, 33(2), 29-37.
Johnson, M. B., & Wen, Z. (2010). Development of an attached microalgal growth system for biofuel production. Applied Microbiology Biotechnology, 85, 525-534.
Kardel, K. Carrano, A. L., Blersch, D. M., & Kaur, M. (2015). Preliminary Development of 3D-Printed Custom Substrata for Benthic Algal Biofilms. Mary Ann Liebert, Inc., 2, 12-19.
Kent, M., Browdy, C. L., & Leffler, J. W. (2011). Consumption and digestion of suspended microbes by juvenile Pacific white shrimp, Litopenaeus vannamei. Aquaculture, 319, 363-368.
Keshavanath, P., Gangadhar, B., Ramesh, T. J., Beveridge, M. C. M., van Dam, A. A., & Verdegem, M. C. J. (2001). On-farm evaluation of Indian major carp production with sugarcane bagasse as substrate for periphyton. Asian Fisheries Society, 14, 367-376.
Khatoon, H., Yusoff, F., Banerjee, S., Shariff, M., & Mohamed, S. (2007). Use of periphytic cyanobacterium and mixed diatoms coated substrate for improving water quality, survival and growth of Penaeus monodon Fabricius postlarvae. Aquaculture, 271, 196-205.
Klein, G., Pierre, G., Bellon-Fontaine, M. N., Zhao, J. M., Breret, M., Maugard, T., & Graber, M. (2014). Marine diatom Navicula jeffreyi: from biochemical composition and physico- chemical surface properties to understanding the first step of benthic biofilm formation. Journal of Adhesion Science and Technology, 28, 1739-1753.
Kristein, I. V., Wichels, A., Krohne, G., & Gerdts, G. (2018). Mature biofilm communities on synthetic polymers in seawater - Specific or general? Marine Environmental Research, 142, 147-154.
Leal, S., Miranda, B. A., Curbelo, R., & Hernández, J. (2010). Las diatomeas bentónicas como fuente de alimento en el cultivo larvario de camarón y otros organismos acuáticos. Avances en Nutrición Acuícola X. Memorias del X Simposio Internacional de Nutrición Acuícola, México.
Leal, S., Medina, M. A., Guerrero, M. A., Piña, P., Nieves, M., & Curbelo, R. (2013). Concentración y composiciones orgánica y proximal de dos especies de diatomeas bentónicas a diferentes salinidades. Universidad & Ciencia, 29(1), 45-52.
Li, H., Cheng, K., Wong, C., Fan, K., Chen, F., & Jiang, Y. (2007). Evaluation of antioxidant capacity and total phenolic content of different fractions of selected microalgae. Food Chemistry, 102, 771-776.
López- Elías, J. A., Huerta, A. N., Murguía, L. A., & Mercado, C. L. R. (2012). Manual de laboratorio de cultivos de apoyo acuícola. Hermosillo, Sonora: Editorial Universidad de Sonora.
López- Elías, J. A., Fimbres, O. D., Medina, J. L. A., Miranda, B. A., Martínez, C. L. R., & Molina, D. M. A. (2013). Producción de biomasa y carotenoides de Dunaliella tertiolecta en medios limitados en nitrógeno. Phyton, 82, 4-11.
Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193, 265-275.
Martínez- Córdova, L. R., Martínez, C. M., López, E. J. A., & Enríquez, O. L. F. (2014). Uso de microorganismos en crustáceos. Biotecnia, 4(3), 50-55.
Mata, M. T., Luza, M. F., & Riquelme, C. (2017). Production of diatom–bacteria biofilm isolated from Seriola lalandi cultures for aquaculture application. Aquaculture Research, 48, 4308-4320.
Miao, L., Wang, P., Hou, J., Yao, Y., Liu, Z., Liu, S., & Li, T. (2019). Distinct community structure and microbial functions of biofilms colonizing microplastics. Science of Total Environment, 650, 2395-2402.
Olivera, A. (2002). Valor nutricional de microalgas. Revista da ABCC, 4(2), 63-68.
Pande, S., Khan, R. P., & Venkitasubramanian, T. (1963). Microdetermination of lipids and serum total fatty acids. Analytical Biochemistry, 6, 415-423.
Pandey, P. K., Bharti, V., & Kumar, K. (2014). Biofilm in aquaculture production. African Journal of Microbiology Research, 8, 1434-1442.
Patil, J. S., & Anil, A. C. (2005). Quantification of diatoms in biofilms: Standardization of methods. Biofouling, 21, 181-188.
Ramesh, M. R., Shankar, K. M., Mohan, C. V., & Varghese, T. J. (1999). Comparison of three plant substrates for enhancing carp growth through bacterial biofilm. Aqua Engineering, 19, 119-131.
JMP. (2010). SAS Institute Inc., Cary, NC, 1989-2019.
Shen, Y., Zhang, H., Xu, X., & Lin, X. (2015). Biofilm formation and lipid accumulation of attached culture of Botryococcus braunii. Bioprocess and Biosystems Engineering, 38, 481-488.
Sweat, L. H., & Johnson, K. B. (2013). The effects of fine-scale substratum roughness on diatom community structure in estuarine biofilms. Biofouling, 29, 879-890.
Tuchman, M. L., & Stevenson, R. J. (1980). Comparison of clay tile, sterilized rock, and natural substrate diatom communities in a small stream in southeastern Michigan, USA. Hydrobiology, 75, 73-79.
Thompson, F. L., Abreu, P. C., & Wasielesky, W. (2002). Importance of biofilm for water quality and nourishment in intensive shrimp culture. Aquaculture, 203, 263-278.
van Dam, A. A., Beveridge, M. C. M., Azim, M. E., & Verdegem, M. C. J., (2002). The potential of fish production based on periphyton. Reviews in Fish Biology and Fisheries, 12, 1-31.
Tyler, E. I., & Allen, G. D. (2011). Species and material considerations in the formation and development of microalgal biofilms. Applied Microbiology and Biotechnology, 92, 283-294.
Van Colen, C., Underwood, G. J. C., Serôdio, J., & Paterson, D. (2014). Ecology of intertidal microbial biofilms: Mechanisms, patterns and future research needs. Journal of Sea Research, 92, 2-5.
Viau, V. E., Moreira, de S. D., Rodríguez, E. M., Wasielesky Jr., W., Abreu, P. C., & Ballester, E. L. C. (2013). Biofilm feeding by postlarvae of the pink shrimp Farfantepenaeus brasiliensis (Decapoda, Penaidae). Aquaculture Research, 44, 783-794.
Wingender, J., New, T. R., & Flemming, H. C. (1999). Microbial Extracellular Polymeric Substances. In J. Wingender, T. R. New, & H. C. Flemming (Eds.), What are bacterial extracellular polymeric substances? (pp. 93-112). Berlin: Springer-Verlag.
Comments
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright (c) 2019 Luis R. Martinez-Cordova, Ana Lucia Gomez-Ramirez, Luis Fernando Enriquez-Ocaña, Anselmo Miranda-Baeza, Beatriz Cordero-Ezquivel, Jose Antonio Lopez-Elias