Abstract
Introduction: Invasive species are considered the second cause of extinction of native species after habitat loss. The impacts of invasive species have serious economic implications since the presence of this type of species can result in a decrease in ecosystem services granted to humans. In marine systems, some human activities such as maritime transport and aquaculture have favored the dispersion of invasive species, especially those with commercial importance. This paper describes the potential distribution of the tiger shrimp, Penaeus monodon, an invasive species along the American Atlantic coast. Objective: To describe a potential distribution model of Penaeus monodon in the American Atlantic region and compare the environmental characteristics of this region with those of the Indo-Pacific original niche conditions. Methods: Using geographic and environmental data, we constructed and tested three models to determine the efficiency of MaxEnt v. 3.3 software in predicting new areas for the distribution of this invasive shrimp species. Geographic data were downloaded from such web sites as the Global Biodiversity Information Facility, the Ocean Biogeographic Information System, and the United States Geological Survey, as well from literature. Environmental data were downloaded from Bio-Oracle v2.0 data base. The three tested models were: 1) the first was created using only recordings of Penaeus monodon from the Indo-Pacific (its origin zone) and then projected to the Atlantic (native model); 2) the second was built using only recordings from the invaded area; the training and projection area of this model was the Atlantic (invasive model); 3) the third included recordings from both the Indo-Pacific and Atlantic regions, and the model was trained and projected jointly in both areas (complete model). We extracted the values of the three models for each tiger shrimp sightings in the invaded area; sightings with values ³ 0.5 were considered as valid prediction of occurrence of the species. Results: We found that the following variables explained 80 % of species distribution: phosphates from the ocean surface, coastal type, chlorophyll a, and maximum bottom temperature. In terms of the models’ ability to predict the occurrences reported in the Atlantic, results were as follows: Native model had a prediction index of 40 %; Invasive model was able to predict 81 % of recordings; and complete model predicted 92 % of total occurrences reported in the invaded area. Conclusions: Our findings suggest that based on the complete model, the countries where the tiger shrimp could establish itself are Mexico and Cuba. Continuous monitoring and conservation actions are relevant in the countries where this species is currently established, as well of those countries with potential for invasions.
References
Aguado, N. F., & Sayegh, J. (2007). Presencia del camarón tigre, Penaeus monodon, en la costa del Estado Anzoátegui, Venezuela. Boletín del Instituto Oceanográfico de Venezuela, 46(2), 107-111.
Alfaro-Montoya, J., Monge-Ortiz, A. M., Martínez-Fernández, D., & Herrera-Quesada, E. (2015). First record of the nonindigenous Penaeus monodon Fabricius, 1798 (Penaeidae) in the Caribbean Sea of Costa Rica, Central America, with observations on selected aspects of its reproductive biology. BioInvasions Records, 4(3), 217-222.
Altuve, D. E., Marcano, L. A., Alió, J. J., & Blanco-Rambla, J. P. (2008). Presencia del camarón tigre Penaeus monodon (Fabricius, 1798) en la costa del delta del río Orinoco y golfo de Paria, Venezuela. Memoria de la Fundación La Salle de Ciencias Naturales, 68(169), 83-92.
Bax, N., Williamson, A., Agüero, M., González, E., & Geeves, W. (2003). Marine invasive alien species: a threat to global biodiversity. Marine Policy, 27(4), 313-323.
Bock, D. G., Caseys, C., Cousens, R. D., Hahn, M. A., Heredia, S. M., Hübner, S., & Rieseberg, L. H. (2015). What we still don't know about invasion genetics. Molecular Ecology, 24(9), 2277-2297.
Briggs, M., Funge-Smith, S., Subasinghe, R. P., & Phillips, M. (2005). Introducciones y movimiento de dos especies de camarones peneidos en Asia y el Pacífico. Roma, ITA: Food & Agriculture Org.
Broennimann, O., & Guisan, A. (2008). Predicting current and future biological invasions: both native and invaded ranges matter. Biology Letters, 4(5), 585-589.
Broennimann, O., Fitzpatrick, M. C., Pearman, P. B., Petitpierre, B., Pellissier, L., Yoccoz, N. G., … Guisan, A. (2012). Measuring ecological niche overlap from occurrence and spatial environmental data. Global Ecology and Biogeography, 21, 481-497.
Cawthorne, D. F., Beard, T., Davenport, J., & Wickins, J. F. (1983). Responses of juvenile Penaeus monodon Fabricius to natural and artificial sea waters of low salinity. Aquaculture, 32(1-2), 165-174.
Cintra, I. H., De Sá Paiva, K., Do Nascimento Botelho, M., & De Araújo Silva, K. C. (2011). Presence of Penaeus monodon in the continental shelf of the State of Para, Northern Brazil (Crustacea, Decapoda, Penaeidae). Amazonian Journal of Agricultural and Environmental Sciences, 54(3), 314-317.
Dall, W., Hill, B. J., Rothlisberg, P. C., & Sharples, D. J. (1990). The biology of the Penaeidae (Advances in Marine Biology, 27). San Diego, CA: Academic Press.
Da Silva, J. M. C., De Souza, M. A., Ribeiro, V., & Machado, R. B. (2018). Niche expansion of the common waxbill (Estrilda astrild) in its non-native range in Brazil. Biological Invasions, 20(9), 2635-2646.
Duncan, C. P., Schladow, S. G., & Williams, W. G. (1982). Surface currents near the greater and lesser Antilles. International Hydrographic Review, 59(2), 67-78.
Elith, J., Phillips, S. J., Hastie, T., Dudík, M., Chee, Y. E., & Yates, C. J. (2011). A statistical explanation of MaxEnt for ecologists. Diversity and Distributions, 17(1), 43-57.
FAO. (2018). Cultured Aquatic Species Information Programme. Penaeus monodon. Retrieved from http://www.fao.org/fishery/culturedspecies/Penaeus_monodon/en
Ficetola, G. F., Thuiller, W., & Miaud, C. (2007). Prediction and validation of the potential global distribution of a problematic alien invasive species - the American bullfrog. Diversity and Distributions, 13(4), 476-485.
Flegel, T. W. (1997). Major viral diseases of the black tiger prawn (Penaeus monodon) in Thailand. World Journal of Microbiology and Biotechnology, 13(4), 433-442.
Giménez-Hurtado, E., Jar, L. P., Ceballos, B. J., Vilaon, D. C., Ramírez, J. R., & Naranjo, R. A. (2014). Distribución del camarón tigre Penaeus monodon (Fabricius, 1798) en las costas de Cuba. Perspectivas y acciones futuras. Revista Cubana de Investigaciones Pesqueras, 31(1), 30-36.
Guisan, A., Petitpierre, B., Broennimann, O., Daehler, C., & Kueffer, C. (2014). Unifying niche shift studies: insights from biological invasions. Trends in Ecology & Evolution, 29(5), 260-269.
Johnson, L. E., Ricciardi, A., & Carlton, J. T. (2001). Overland dispersal of aquatic invasive species: a risk assessment of transient recreational boating. Ecological Applications, 11(6), 1789-1799.
Knott, D. M., Fuller, P. L., Benson, A. J., & Neilson, M. E. (2018). Penaeus monodon: U.S. Geological Survey. Retrieved from https://nas.er.usgs.gov/queries/factsheet.aspx?SpeciesID=1209
Kulhanek, S. A., Leung, B., & Ricciardi, A. (2011). Using ecological niche models to predict the abundance and impact of invasive species: application to the common carp. Ecological Applications, 21(1), 203-213.
Leroy, B., Delsol, R., Hugueny, B., Meynard, C.N., Barhoumi, C., Barbet-Massin, M., & Bellard, C., (2018). Without quality presence - absence data, discrimination metrics such as TSS can be misleading measures of model performance. Journal of Biogeography, 45, 1994-2002.
Lightner, D. V. A. (1996). Handbook of shrimp pathologyand diagnostic procedures for disease of cultured penaeid shrimp. Baton Rouge, USA: World Aquaculture Society.
Lutz, Í., Nascimento, M., Isaac, V., Raiol, M., Silva, U., Mourão, K., & Bentes, B. (2015). First record of giant-tiger-shrimp Penaeus monodon Fabricius, 1798, in an upper Amazon estuary. Biota Amazônia, 5(3), 115-116.
Morán-Silva, A., Chávez-López, R., Jiménez-Badillo, M., Cházaro-Olvera, S., Galindo-Cortes, G., & Meiners-Mandujano, C. G. (2017). Análisis de la comunidad de peces de descarte en la pesca de arrastre de camarón (temporada de lluvias 2013) en la zona centro-sur del litoral veracruzano, México. Revista de Biología Marina y Oceanografía, 52(3), 551-566.
Overstreet, R., Lightner, D., Hasson, K., Mcilwain, S., & Lotz, J. (1997). Susceptibility to Taura syndrome virus of some penaeid shrimp species native to the Gulf of Mexico and the southeastern United States. Journal of Invertebrate Pathology, 69, 165-176.
Peterson, A. T., & Vieglais, D. A. (2001). Predicting Species Invasions Using Ecological Niche Modeling: New Approaches from Bioinformatics Attack a Pressing Problem: A new approach to ecological niche modeling, based on new tools drawn from biodiversity informatics, is applied to the challenge of predicting potential species' invasions. BioScience, 51(5), 363-371.
Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006) Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190(3-4), 231-259.
R Core Team. (2018). R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. Retrieved from https://www.R-project.org
Rodríguez, G., & Suárez, H. (2001). Anthropogenic dispersal of decapod crustaceans in aquatic environments. Interciencia, 26(7), 282-288.
Sandoval, L. A., Leal-Florez, J., Taborda, A., & Vásquez, J. G. (2014). Spatial distribution and abundance of the giant tiger prawn, Penaeus monodon (Fabricius, 1798), in the Gulf of Urabá (Caribbean), Colombia, South America. BioInvasions Records, 3(3), 169-173.
Schoener, T. W. (1968). Anolis lizards of Bimini: resource partitioning in a complex fauna. Ecology, 49, 704-726.
Simberloff, D., Parker, I. M., & Windle, P. N. (2005). Introduced species policy, management, and future research needs. Frontiers in Ecology and the Environment, 3(1), 12-20.
Soberón, J., & Peterson, A. T. (2005). Interpretation of models of fundamental ecological niches and species distributional areas. Biodiversity Informatics, 2, 1-10.
Thuiller, W., Richardson, D. M., Pyšek, P., Midgley, G. F., Hughes, G. O., & Rouget, M. (2005). Niche‐based modelling as a tool for predicting the risk of alien plant invasions at a global scale. Global Change Biology, 11(12), 2234-2250.
Tingley, R., Vallinoto, M., Sequeira, F., & Kearney, M. R. (2014). Realized niche shift during a global biological invasion. Proceedings of the National Academy of Sciences, 111(28), 10233-10238.
Turner, K. G., Fréville, H., & Rieseberg, L. H. (2015). Adaptive plasticity and niche expansion in an invasive thistle. Ecology and Evolution, 5(15), 3183-3197.
Wakida-Kusunoki, A. T., De Anda-Fuentes, D., & López-Téllez, N. A. (2013). Presence of giant tiger shrimp Penaeus monodon (Fabricius, 1798) in eastern Peninsula of Yucatan coast, Mexico. Latin American Journal of Aquatic Research, 44(1),155-158.
Wakida-Kusunoki, A. T., Rojas-González, R. I., González-Cruz, A., Amador del Ángel, L. E., Sánchez-Cruz, J. L., & López-Tellez, N. A. (2016). Presence of giant tiger shrimp Penaeus monodon Fabricius, 1798 on the Mexican coast of the Gulf of Mexico. BioInvasions Records, 2(4), 325-328.
Warren, D. L., Glor, R. E., & Turelli, M. (2008). Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evolution: International Journal of Organic Evolution, 62(11), 2868-2883.
Comments
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright (c) 2020 Luis Hernández