Abstract
Potential distribution of two subspecies of Montanoa tomentosa (Asteracerae) in Mexico. Abstract. Introduction: Montanoa tomentosa is a phytogenetic resource with medicinal properties used in Mexico. Despite its botanic relevance, the specific information of infraespecific taxa distributions and the environmental factors that influence their development is still limited. Objective: To report the potential geographic distribution and the environmental variables associated to ecological niches of two subspecies of M. tomentosa (M. tomentosa subsp. tomentosa and M. tomentosa subsp. xanthiifolia) in the Mexican territory. Methods: A database of herbarium records was created, an in situ systematic search of both subspecies was carried out from October 2015 to March 2016, during the flowering-fruiting season. After that, exploratory tours (Guanajuato, Querétaro, Hidalgo, Mexico City, State of Mexico, Puebla, Oaxaca and Chiapas) were realized. A total of 181 individuals were sampled and georeferenced, generating new records for the database upgrading. Three habitat suitability models (M. tomentosa complex, M. tomentosa subsp. tomentosa and M. tomentosa subsp. xanthiifolia) were generated using the MaxEnt software. These software estimates the probability of species distribution using geo-referenced data and environmental characteristics as predictors, through the maximum entropy logarithm and the Bayesian method. Results: From 22 environmental variables used as predictors, five (seasonality of temperature, isothermality, maximum temperature of the warmest month, precipitation of the warmest trimester and precipitation of the wettest trimester) contributed 70.2 % of the total percentage contribution. The model showed a potential distribution of 77 688 km2, approximately 4 % of the Mexican Republic territory. Both subspecies grew between 500 and 2 500 m. They were associated to xerophilous and heliophiles vegetation, sometimes they were located in the periphery or embed in openings of temperate and sub-humid forests too. They were not present dry regions from the North of the country. Conclusions: Temperature seasonality, isothermality and maximum temperature of the warmest month determine the distribution of the species. Precipitation of the warmest quarter and precipitation of wettest quarter defines the habitat between M. tomentosa subsp. tomentosa and M. tomentosa subsp. xanthiifolia. These findings clarify the ecological preferences and delimitation the infraspecific taxa of M. tomentosa.
References
Broennimann, O., Thuiller, W., Hughes, G., Midgley, G.F., Alkemade, J.M.R., & Guisan, A. (2006). Do geographic distribution, niche property and life form explain plants’ vulnerability to global change? Global Change Biology, 12(6), 1079-1093.
Carro-Juárez, M., Franco, M.A., & Rodríguez-Peña, M.L. (2014). Increase of the Ejaculatory Potency by the Systemic Administration of Aqueous Crude Extracts of Cihuapatli (Montanoa Genus) Plants in Spinal Male Rats. Journal of Evidence-Based Complementary and Alternative Medicine, 19(1), 43-50.
Chen, J., Li, Z., Maiwulanjiang, M., Zhang, W.L., Zhan, J.Y., Lam, C.T., & Tsim, K.W. (2013). Chemical and biological assessment of Ziziphus jujuba fruits from China: different geographical sources and developmental stages. Journal of Agricultural and Food Chemistry, 61, 7315-7324.
Chen, J., Xu, Y., Wei, G., Liao, S., Zhang, Y., Huang, W., & Wang, Y. (2015). Chemotypic and genetic diversity in Epimedium sagittatum from different geographical regions of china. Phytochemistry, 116, 180-187.
Cruz-Cárdenas, G., Villaseñor, J.L., López-Mata, L., & Ortiz, E. (2013). Distribución espacial de la riqueza de especies de plantas vasculares en México. Revista Mexicana de Biodiversidad, 84, 1189-1199.
Elham, G., Ardestani, M.T., Mehdi, B., & Mohammad, R.V. (2015). Potential habitat modeling for reintroduction of three native plant species in central Iran. Journal of Arid Land, 7(3), 381-390.
Funk, V.A. (1982). The Systematics of Montanoa (Asteraceae, Heliantheae). Memoirs of The New York Botanical Garden, 36, 1-135.
Guisan, A., & Thuiller, W. (2005). Predicting species distribution: offering more than simple habitat models. Ecology Letters, 8, 993-1009.
Hahnn, D.W., Ericson, E.W., Lai, M.T., & Probst, A. (1981). Antifertility activity of Montanoa tomentosa (Zoapatle). Contraception, 23, 133-140.
Hoffman, J.D., Narumalani, S., Mishra, D.R., Merani, P., & Wilson, R.G. (2008). Predicting potential occurrence and spread of invasive plant species along the North Platte River, Nebraska. Invasive Plant Science and Management, 1, 359-367.
Instituto Nacional de Estadística y Geografía (INEGI). (2013). Conjunto de Datos Vectoriales de Uso de Suelo y Vegetación. Escala 1:250 000. Serie V (Capa Unión), escala: 1:250 000. Edición: 1. Aguascalientes, México: Instituto Nacional de Estadística y Geografía.
Külheim, C., Yeoh, S.H., Wallis, I.R., Laffan, S., Moran, G.F., & Foley, W.J. (2011). The molecular basis of quantitative variation in foliar secondary metabolites in Eucalyptus globulus. New Phytologist, 191, 1041-1053.
Lozoya-Legorreta, X., Velázquez-Diaz, G., & Flores-Alvarado, A. (1988). La medicina tradicional en México: Experiencia del programa IMSS-COPLAMAR 1982-1987. Ciudad de México, México: Instituto Mexicano del Seguro Social (IMSS).
Luna-Vega, I., Alcántara-Ayala, O., Contreras-Medina, R., & Ríos-Muñoz, C.A. (2012). Ecological niche modeling on the effect of climatic change and conservation of Ternstroemia lineata DC. (Ternstroemiaceae) in Mesoamerica. Botany, 90, 637-650.
Manel, S., Schwartz, M.K., Luikart, G., & Taberlet, P. (2003). Landscape genetics: combining landscape ecology and population genetics. Trends in Ecology and Evolution, 18(4), 189-197.
Maples-Vermeersch, M. (1992). Regímenes de humedad del suelo en Hidrogeografía IV.6.2 Atlas Nacional de México. Vol. II. Escala 1:4000000. Ciudad de México, México: Instituto de Geografía, Universidad Nacional Autónoma de México.
Martin, P.S., Yetman, D.A., Fishbein, M.E., Jenkins, P.D., van Devender, T.R., & Wilson, R.K. (1998). Gentry’s Rio Mayo Plants: The Tropical Deciduous Forest and Environs of Northwest Mexico. Tucson Arizona: The University of Arizona Press.
Martínez-De la Cruz, I., Vibrans, H., Lozada-Pérez, L., Romero-Manzanares, A., Aguilera-Gómez, L.I., & Rivas-Manzano, I.V. (2015). Plantas ruderales del área urbana de Malinalco, Estado de México, México. Botanical Sciences, 93(4), 907-919.
Martínez-Meyer, E. (2005). Climate change and biodiversity: some considerations in forecasting shifts in species’ potential distributions. Biodiversity Informatics, 2, 42-55.
Maciel-Mata, C.A., Manríquez-Morán, N., Octavio-Aguilar, P., & Sánchez-Rojas, G. (2015). El área de distribución de las especies: revisión del concepto. Acta Universitaria, 25(2), 3-19.
Molina-Moreno, J.C., & Córdova-Téllez, C.T. (2006). Recursos Fitogenéticos de México para la Alimentación y la Agricultura: Informe Nacional 2006. Texcoco, Estado de México, México: Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación y Sociedad Mexicana de Fitogenética, A.C.
Paiaro, V., Oliva, G.E., Cocucci, A.A., & Sérsic, A.N. (2012). Geographic patterns and environmental drivers of flower and leaf variation in an endemic legume of Southern Patagonia. Plant Ecology & Diversity, 5(1), 13-25.
Panero, J., & Villaseñor, J.L. (2008). Asteráceas (Dicotiledóneas). En S. Ocegueda & J. Llorente-Bousquets (Eds.), Catálogo taxonómico de especies de México. Capital natural de México (Vol. I), Conocimiento actual de la biodiversidad (CD1). Ciudad de México, México: Comisión Nacional para el Conocimiento y Uso de la Biodiversidad.
Peterson, A.T., Ball, L.G., & Cohoon, K.P. (2002). Predicting distributions of Mexican birds using ecological niche modelling methods. International Journal of Avian Science, 144(1), 27-32.
Peterson, A.T. (2003). Projected climate change effects on Rocky Mountain and Great Plains birds: generalities of biodiversity consequences. Global Change Biology, 9(5), 647-655.
Phillips, S.J., Dudík, M., & Schapire, R.E. (2019). Maxent software for modeling species niches and distributions (Version 3.4.1). Retrieved from http://biodiversityinformatics.amnh.org/open_source/maxent/.
Plovanich, A.E., & Panero, J.L. (2004). A phylogeny of the ITS and ETS for Montanoa (Asteraceae: Heliantheae). Molecular Phylogenetics and Evolution, 31, 815-821.
Robles-Zepeda, R.E., Lozoya-Gloria, E., López, M.G., Villarreal, M.L., Ramírez-Chávez, E., & Molina-Torres, J. (2006). Montanoa tomentosa glandular trichomes containing kaurenoic acids chemical profile and distribution. Fitoterapia, 80, 12-17.
Soberón, J., & Peterson, A.T. (2005). Interpretation of Models of Fundamental Ecological Niches and Species’ Distributional Areas. Biodiversity Informatics, 2, 1-10.
van Devender, T.R., Sanders, A.C., Wilson, R.K., & Meyer, S.A. (2000). Vegetation, flora and seasons of the Río Cuchujaqui, a tropical deciduous forest near Alamos, Son. En R.H. Robichaux & D. Yetman (Eds.), The Tropical Deciduous Forest of Alamos: Biodiversity of a Threatened Ecosystem in Mexico (pp. 37-101). Tucson, Arizona: The University of Arizona Press.
Villa-Ruano, N., Betancourt-Jiménez, M.G., & Lozoya-Gloria, E. (2009) Biosynthesis of uterotonic diterpenes from Montanoa tomentosa zoapatle. Journal of Plant Physiology, 166, 1961-1967.
Villa-Ruano, N., & Lozoya-Gloria, E. (2014). Anti-fertility and other biological activities of zoapatle (Montanoa spp.) with biotechnological application. Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas, 13, 415-436.
Zhao, K.J., Dong, T.T.X., Tu, P.F., Song, Z.H., Lo, C.K., & Tsim, K.W.K. (2003). Molecular genetic and chemical assessment of Radix Angelicae (Danggui) in China. Journal of Agricultural and Food Chemistry, 51, 2576-2583.
Comments
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright (c) 2020 Néstor Hernández Silva, Jesus Hernández-Ruíz, M.Socorro Gonzalez Elizondo, M.Socorro Gonzalez Elizondo, Rodolfo Figueroa Brito, Nemesio Villa Ruano