Revista de Biología Tropical ISSN Impreso: 0034-7744 ISSN electrónico: 2215-2075

OAI: https://revistas.ucr.ac.cr/index.php/rbt/oai
Sex ratio of the green sea turtle Chelonia mydas (Testudines: Cheloniidae) hatchlings in the Guanahacabibes Peninsula, Cuba
PDF
HTML

Keywords

marine turtles
climate change
sex ratio
conservation
temperature
tortugas marinas
cambio climático
proporción sexual
conservación
temperatura

How to Cite

Calderón-Peña, R., Betancourt-Avila, R., Rodríguez-Fajardo, E., Martínez-González, Y., & Azanza-Ricardo, J. (2020). Sex ratio of the green sea turtle Chelonia mydas (Testudines: Cheloniidae) hatchlings in the Guanahacabibes Peninsula, Cuba. Revista De Biología Tropical, 68(3), 777–784. https://doi.org/10.15517/rbt.v68i3.39033

Abstract

Introduction: Sea turtles have temperature dependent sex determination. The increase in global temperature leads to higher nest temperatures that can cause a prevalence of females, threatening the future of these species. Objective: The present work aims to evaluate the trend of incubation temperatures and the incubation period, as well as to estimate the sex ratio in nests of Chelonia mydas at Antonio and La Barca beaches, Southwestern Cuba, during the seasons from 2012 to 2018. Methods: Temperature data loggers were placed in green turtle nests with a representativeness that varied between the years analyzed. To assess the temporal variation of temperatures and incubation periods, a Kruskal-Wallis test was performed in each case. Sex ratio was estimated from its relation with temperature and incubation duration. Results: At La Barca beach, there was a 1.5 °C increase in the mean nest temperature from 2012 to 2018, although no differences were found in the period from 2015 to 2018. At Antonio beach, there is no trend since no differences were found in the mean nest temperature except for the years 2013 and 2017, which had lower temperatures than the other seasons. In both beaches mean nest temperature exceeded 30 °C in most of the years. As a result, there was a predominance of nests with incubation periods shorter than 55 days. With these values, a female hatchling production over 90 % is expected in both study sites. Conclusions: In correspondence with the registered temperature and incubation period values, most of the years reflect a hatchling production biased towards females in both beaches.

https://doi.org/10.15517/rbt.v68i3.39033
PDF
HTML

References

Ackerman, R.A. (1997). The nest environment and embryonic development of sea turtle. In P.L. Lutz & J.A. Musick (Eds.), The biology of sea turtles (pp. 83-106). Boca Raton, FL: CRC Press.

Broderick, A.C., Godley, B.J., & Hays, G.C. (2001). Metabolic Heating and the Prediction of Sex Ratios for Green Turtles (Chelonia mydas). Physiological and Biochemical Zoology, 74(2), 161-170.

Broderick, A.C., Godley, B.J., Reece, S., & Downie, J.R. (2000). Incubation periods and sex ratios of green turtles: highly female biased hatchling production in the eastern mediterranean. Marine Ecology Progress Series, 202, 273-281.

Candan, O., & Kolankaya, D. (2014). Temperature profiles and sex ratio estimation for green turtle (Chelonia mydas) Hatchlings on Sogözü Beaches. Hacettepe Journal of Biology and Chemistry, 42(4), 531-536.

Candan, O., & Kolankaya, D. (2016). Sex ratio of green turtle (Chelonia mydas) hatchlings at Sugözü, Turkey: higher accuracy with pivotal incubation duration. Chelonian Conservation and Biology, 15(1), 102-108.

Cavallo, C., Dempster, T., Kearney, M.R., Kelly, E., Booth, D., Hadden, K. M. & Jessop, T.S. (2015). Predicting climate warming effects on green turtle hatchling viability and dispersal performance. Functional Ecology, 29(6), 768-778.

Fuller, W., Godley, B., Hodgson, D., Reece, S., Witt, M., & Broderick, A. (2013). Importance of spatio-temporal data for predicting the effects of climate change on marine turtle sex ratios. Marine Ecology Progress Series, 488, 267-274.

Gerhartz-Muro, J.L., Azanza-Ricardo, J., Moncada, F., Gerhartz-Abraham, M., Espinosa, L., Forneiro, Y., & Chacón, D. (2018). Sand and incubation temperatures in a sea turtle nesting beach at the Cayos de San Felipe National Park, Pinar del Río, Cuba, during the 2012-2013 season. Revista de Investigaciones Marinas, 38(2), 45-61.

Godley, B.J., Broderick, A.C, Glen, F., & Hays, G.C. (2002). Temperature-dependent sex determination of Ascension Island green turtles. Marine Ecology Progress Series, 226, 115-124.

Jensen, M.P., Allen, C.D., Eguchi, T., Bell, I.P., LaCasella, E.L., Hilton, W.A., … & Dutton, P.H. (2018). Environmental warming and feminization of one of the largest sea turtle populations in the world. Current Biology, 28(1), 154-159.

King, R., Cheng., W.H., Tseng, C.T., Chen, H., & Cheng, I.J. (2013). Estimating the sex ratio of green sea turtles (Chelonia mydas) in Taiwan by the nest temperature and histological methods. Journal of Experimental Marine Biology and Ecology, 445, 140-147.

Laloë, J.O., Esteban, N., Berkel, J., & Hays, G.C. (2016). Sand temperatures for nesting sea turtles in the Caribbean: Implications for hatchling sex ratios in the face of climate change. Journal of Experimental Marine Biology and Ecology, 474, 92-99.

LeBlanc, A.M., Wibbels, T., Shaver, D., & Walker, J.S. (2012). Temperature-dependent sex determination in the Kemp’s ridley sea turtle: effects of incubation temperatures on sex ratios. Endangered Species Research, 19(2), 123-128.

Marcovaldi, M.A.G., Santos, A.J.B., Santos, A.S., Soares, L.S., Lopez, G.G., Godfrey, M.H., … & Fuentes, M.M.P.B. (2014). Spatio-temporal variation in the incubation duration and sex ratio of hawksbill hatchlings: implication for future management. Journal of Thermal Biology, 44, 70-77.

Moncada Gavilán, F., Nodarse Andreu, G., Azanza Ricardo, J., Medina, Y., & Forneiro Martín-Viaña, Y. (2011). Principales áreas de anidación de las tortugas marinas en el archipiélago cubano. Revista electrónica de la Agencia de Medio Ambiente, 11(20), 1-8.

Mrosovsky, N., Dutton, P.H., & Whitmore, C.P. (1984). Sex ratios of two species of sea turtle nesting in Suriname. Canadian Journal of Zoology, 62, 2227-2239.

Mrosovsky, N., Kamel, S., Rees, A., & Margaritoulis, D. (2002). Pivotal temperature for loggerhead turtles (Caretta caretta) from Kyparissia. Canadian Journal of Zoology, 80, 2118-2124.

Ricardo, J.A., Muro, J.L.G, Bretos Trelles, F., & Abraham, A.G. (2013). Temporal variation of incubation temperature of Green turtle nest in the southwestern Cuban archipelago. In A. Tucker, L. Belskis, A. Panagopoulou, A. Rees, M. Frick, K. Williams, … & K. Stewart. Proceeding of the 33rd Annual Symposium on sea turtle biology and conservation. Sea Turtle Biology and Conservation (pp. 194). U.S.A.: NOAA Tech. Mem NMFS-SEFSC-645.

Segura, L.N., & Cajade, R. (2010). The effects of sand temperature on pre-emergent green sea turtle hatchlings. Herpetological Conservation & Biology, 5(2),196-206.

Spotila, J.R., Standora, E.A., Morreale, S.J., & Ruiz, G.J. (1987). Temperature dependent sex determination in the green turtle (Chelonia mydas): effects on the sex ratio on a natural nesting beach. Herpetologica, 43, 74-81.

Standora, E.A., & Spotila, J.R. (1985). Temperature dependent sex determination in sea turtles. Copeia, 1985(3), 480-482.

Tanner, C.E., Marco, A., Martins, S., Abella-Perez, E., & Hawkes, L.A. (2019). Highly feminised sex-ratio estimations for the world’s third-largest nesting aggregation of loggerhead sea turtles. Marine Ecology Progress Series, 621, 209-219.

Tapilatu, R.F. & Ballamu, F. (2015). Nest temperatures of the Piai and Sayang Island green turtle (Chelonia mydas) rookeries, Raja Ampat Papua, Indonesia: Implication for hatchling sex ratio. Biodiversitas, 16(1), 102-107.

Tomillo, P.S., Oro, D., Paladino, F.V., Piedra, R., Sieg, A.E., & Spotila, J.R. (2014). High beach temperatures increased female-biased primary sex ratios but reduced output of female hatchlings in the leatherback turtle. Biological Conservation, 176, 71-79.

Yntema, C.L., & Mrosovsky, N. (1982). Critical periods and pivotal temperatures for sexual differentiation in loggerhead sea turtles. Canadian Journal of Zoology, 60, 1012-1016.

Comments

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2020 Julia Azanza Ricardo

Downloads

Download data is not yet available.