Bain, A., Harrison, R., & Schatz, B. (2014). How to be an ant on figs. Acta Oecologica, 57, 97–108. https://doi.org/10.1016/j.actao.2013.05.006
Benzing, D. (1990). Vascular epiphytes. General biology and related biota. Journal of Tropical Ecology, 8(1), 55–56. https://doi.org/10.1017/S0266467400006088
Bivand, R., Pebesma, E., & Gómez-Rubio, V. (2013). Applied Spatial Data Analysis with R. Springer. https://doi.org/10.1007/978-1-4614-7618-4
Blüthgen, N., Verhaagh, M., Goitía, W., Jaffé, K., Morawetz, W., & Barthlott, W. (2000). How plants shape the ant community in the Amazonian rainforest canopy: the key role of extrafloral nectaries and homopteran honeydew. Oecologia, 125(2), 229–240. https://doi.org/10.1007/s004420000449
Borchert, R. (1994). Soil and stem water storage determine phenology and distribution of tropical dry forest trees. Ecology, 75(5), 1437–1449. https://doi.org/10.2307/1937467
Catling, P. (1995). Evidence for partitioning of Belezean Ant Nest substrate by a characteristic flora. Biotropica, 27(4), 535–537. https://doi.org/10.2307/2388970
Catling, P. (1997). Influence of aerial Azteca nests on the epiphyte community of some belizean orange orchards. Biotropica, 29(2), 237–242. https://doi.org/10.1111/j.1744-7429.1997.tb00031.x
Céréghino, R., Leroy, C., Dejean, A., & Corbara, B. (2010). Ants mediate the structure of phytotelm communities in an ant-garden bromeliad. Ecology, 91(5), 1549–1556. https://doi.org/10.1890/09-1534.1
Davidson, D. (1988). Ecological studies of neotropical ant gardens. Ecological Society of America, 69(4), 1138–1152. https://doi.org/10.2307/1941268
Davidson, D., & Epstein, W. (1989). Epiphytic associations with ants. In U. Lüttge (Ed.), Vascular plants as epiphytes (Vol. 76, pp. 200–233.). Springer. https://doi.org/10.1007/978-3-642-74465-5_8
Dobson, A. J., & Barnett, A. G. (2008). An introduction to generalized linear models. Chapman & Hall/CRC.
Espinal, L. (1964). Formaciones vegetales del departamento de Antioquia. Revista Facultad Nacional de Agronomía, 24(60), 1–81.
ESRI (2011). ArcGIS Desktop (Version 10.3, Computer software). Environmental System Research Institute, Redlands, CA, USA. http://desktop.arcgis.com/en/arcmap
Fournier, L. (1974). Un método cuantitativo para la medición de características fenológicas en árboles. Turrialba, 24(4), 422–423.
Freedman, D., Pisani, R., & Purves, R. (2007). Statistics (4th Ed). W. W. Norton & Company.
Gentry, A., & Dodson, C. (1987). Contribution of Nontrees to Species Richness of a Tropical Rain Forest. Biotropica, 19(2), 149–156. https://doi.org/10.2307/2388737
IDEAM. (2018). Datos meteorológicos en la estación de la Universidad del Valle de Cali. www.ideam.gov.co
Kaufmann, E. (2002). Southeast Asian Ant-gardens: Diversity, Ecology, Ecosystematic Significance, and Evolution of Mutualistic Anti-epiphyte Associations (Doctoral dissertation). Universität Frankfurt am Main, Germany. https://core.ac.uk/reader/14505280
Kaufmann, E., Weissflog, A., Hashim, R., & Maschwitz, U. (2001). Ant-gardens on the giant bamboo Gigantochloa scortechinii (Poaceae) in West-Malaysia. Insectes-Sociaux, 48(2), 125–133. https://doi.org/10.1007/PL00001754
Kleinfeldt, S. (1978). Ant-gardens: the interaction of Codonanthe crassifolia (Gesneriaceae) and Crematogaster longispina (Formicidae). Ecology, 59(3), 449–456. https://doi.org/10.2307/1936574
Leal, L., Jacovak, C., Bobrowiec, P., Camargo, J., & Peixoto, P. (2017). The role of parabiotic ants and environment on epiphyte composition and protection in ant gardens. Sociobiology, 64(3), 276–283. https://doi.org/10.13102/sociobiology.v64i3.1219
Levene, H. (1960). Robust tests for equality of variances. In I. Olkin & H. Hotelling (Eds.), Contributions to Probability and Statistics: Essays in Honor of Harold Hotelling (pp. 278–292). Stanford University Press.
Levey, D. (1988). Spatial and temporal variation in Costa Rican fruit and fruit-eating bird abundance. Ecological Monographs, 58(4), 251–269. https://doi.org/10.2307/1942539
Lieberman, D. (1982). Seasonality and phenology in a dry tropical forest in Ghana. British Ecological Society, 70(3), 791–806. https://doi.org/10.2307/2260105
Longino, J. (2007). A taxonomic review of the genus Azteca (Hymenoptera: Formicidae) in Costa Rica and a global revision of the aurita group. Zootaxa, 1491(1), 1–63. https://doi.org/10.11646/zootaxa.1491.1.1
MacArthur, R., & Wilson, E. (1967). The Theory of Island Biogeography. Princeton University Press.
Madison, M. (1979). Additional observations on ant-gardens in Amazonas. Selbyana, 2(1), 133–148.
Morales-Linares, J., García-Franco, J., Flores-Palacios, A., & Valenzuela-González, J. (2017). Spatial structure of ant-gardens: vertical distribution on host trees and succession/segregation of associated vascular epiphytes. Journal of Vegetation Sciences, 28(10), 1036–1046. https://doi.org/10.1111/jvs.12559
Morales-Linares, J., García-Franco, J., Flores-Palacios, A., Valenzuela-González, J., Mata-Rosas, M., & Díaz-Castelazo, C. (2016). Vascular epiphytes and host trees of ant-gardens in an anthropic landscape in southeastern Mexico. Naturwissenschaften, 103(11-12), 96. https://doi.org/10.1007/s00114-016-1421-9
Morales-Linares, J., García-Franco, J., Flores-Palacios, A., Valenzuela-González, J., Mata-Rosas, M., & Díaz-Castelazo, C. (2018). Orchid seed removal by ants in Neotropical ant-gardens. Plant Biology, 20(3), 525–530. https://doi.org/10.1111/plb.12715
Newstrom, L., Frankie, G., & Baker, H. (1994). A new classification for plant phenology based on flowering patterns in lowland tropical rain forest trees at La Selva, Costa Rica. Biotropica, 26(2), 141–159. https://doi.org/10.2307/2388804
Orivel, J., & Leroy, C. (2010). The diversity and ecology of ant gardens (Hymenoptera: Formicidae; Spermatophyta: Angiospermae). Myrmecological News, 14, 73–85.
R Core Team (2013). R: A language and environment for statistical computing (Version 3.5.2, R Core Team, Computer software). Vienna, Austria. http://www.r-project.org
Rasband, W. (2018). ImageJ (Computer software). Bethesda: National Institutes of Health. https://imagej.nih.gov/ij
Sahagun-Godinez, E. (1996). Trends in the Phenology of Flowering in the Orchidaceae of Western Mexico. Biotropica, 28(1), 130–136. https://doi.org/10.2307/2388778
Sardi, A., Torres, A., & Corredor, G. (2018). Diversidad florística en un paisaje rural del piedemonte de los Farallones de Cali, Colombia. Colombia Forestal, 21(2), 142–160. https://doi.org/10.14483/2256201X.10866
Schmit-Neuerburg, V., & Blüthgen, N. (2007). Ant-garden epiphytes are protected against drought in a Venezuelan lowland rain forest. Ecotropica, 13(2), 93–100.
Shapiro, S. S., & Wilk, M. B. (1965). An analysis of variance test for normality (complete samples). Biometrika, 52(3–4), 591–611. https://doi.org/10.1093/biomet/52.3-4.591
Tukey, J. W. (1977). Exploratory data analysis (Vol. 2). Reading Mass.
Van Schaik, C., Terborgh, J., & Wright, J. (1993). The Phenology of Tropical Forests: Adaptive Significance and Consequences for Primary Consumers. Annual Review of Ecology and Systematics, 21, 353–377. https://doi.org/10.1146/annurev.es.24.110193.002033
Vantaux, A., Dejean, A., Dor, A., & Orivel, J. (2007). Parasitism versus mutualism in the ant-garden parabiosis between Camponotus femoratus and Crematogaster levior. Insectes-Sociaux, 54(1), 95–99. https://doi.org/10.1007/s00040-007-0914-0
Ward, P. (2019). Species: Azteca gnava - AntWeb. www.antweb.org/description.do?name=gnava&genus=azteca&rank=species&project=worldants
Way, M. (1963). Mutualism between ants and honeydew-producing homoptera. Annual Review of Entomology, 8(1), 307–344. https://doi.org/10.1146/annurev.en.08.010163.001515
Weissflog, A., Kaufmann, E., & Maschwitz, U. (2017). Ant gardens of Camponotus (Myrmotarsus) irritabilis (Hymenoptera : Formicidae : Formicinae) and Hoya elliptica (Apocynaceae) in Southeast Asia. Asian Mirmercology, 9, e009001. https://doi.org/10.20362/am.009001
Werner, F., & Gradstein, S. (2009). Diversity of dry forest epiphytes along a gradient of human disturbance in the Tropical Andes. Journal of Vegetation Science, 20(1), 59–68. https://doi.org/10.1111/j.1654-1103.2009.05286.x
Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, D. A. L., François, R., Grolemund, G., Hayes, A., Henry, L., Hester, J., Kuhn, M., Lin Pedersen, T., Miller, E., Milton Bache, S., Müller, K., Ooms, J., Robinson, D., Seidel, D. P., Spinu, V., … Yutani, H. (2019). Welcome to the Tidyverse. (Version 1.3.0, R package). Journal of Open Source Software, 4(43), 1686. 10.21105/joss.01686
Williams-Linera, G., & Meave, J. A. (2002). Patrones fenológicos. In M. Guariguata, G. Kattan, & M. Guariguata (Eds.), Ecología y Conservación de Bosques Neotropicales (pp. 408–431). Ediciones LUR.
Youngsteadt, E., Nojima, S., Häberlein, C., Schulz, S., & Schal, C. (2008). Seed odor mediates an obligate ant-plant mutualism in Amazonian rainforests. Proceedings of the National Academy of Sciences, 105(12), 4571–4575. https://doi.org/10.1073/pnas.0708643105
License
Copyright
© Revista de Biología Tropical, 2022
Affiliations
Ángela Marcela Barrera-Bello
Universidad del Valle
Alba Marina Torres-González
Universidad del Valle
How to Cite
Comments
Basic ecology of ant gardens in a dry-premontane transitional forest
Vol 70 No 1 (2022): Revista de Biología Tropical (Rev. Biol. Trop.): Continuous publication, 01 January - 31 December 2022
Published: Aug 3, 2022
Abstract
Introduction: Ant gardens are ant nests located at different heights on trees on which vascular epiphytic plants that have been transported and sown by ants have germinated. Although this mutualistic relationship has been studied in humid tropical ecosystems, information on other tropical and Colombian ecosystems is scarce. Objective: To characterize the spatial distribution, formation process, diversity, demography, and phenology of Ant gardens in a secondary dry premontane transitional forest in Colombia. Methods: We estimated the spatial distribution and formation process of ant gardens. Phenological and demographic monitoring of epiphytes plants of ant gardens was performed. The monitoring of the ant gardens was done in transects, every 15 days. Results: The ant gardens showed an aggregated distribution pattern relative to water bodies. The garden-forming ant species was identified as Azteca ulei. Ten species of epiphytes plants and 13 species of phorophytes trees related to ant gardens were identified. The behavior of A. ulei favored the formation and maintenance of the ant gardens. A positive relationship was found between epiphyte richness and ant garden size. Some epiphytes presented a bimodal phenological pattern. The demographic pattern of epiphytes suggests that in the dry season, the number of established seedlings is reduced, which reduces the number of adults that remain in ant gardens. Conclusions: Ant gardens are the microhabitat that allows the germination, establishment, and reproduction of diverse epiphytes in the studied dry-premontane transitional forest.