Revista de Biología Tropical ISSN Impreso: 0034-7744 ISSN electrónico: 2215-2075

OAI: https://revistas.ucr.ac.cr/index.php/rbt/oai
Functional ecology of the periphytic algal communities of the La Planada Reserve, in the Colombian Biogeographic Chocó
PDF (Español (España))
HTML (Español (España))

Keywords

benthic microalgae
community weighted mean
community weighted variance
functional trait
phycoperiphyton
ficoperifíton
media ponderada de la comunidad
microalgas bentónicas
rasgo funcional
varianza ponderada de la comunidad

How to Cite

Guerrero Lizarazo, M. C., Pinilla-Agudelo, G., & Estrada Galindo, I. J. (2021). Functional ecology of the periphytic algal communities of the La Planada Reserve, in the Colombian Biogeographic Chocó. Revista De Biología Tropical, 69(1), 331–351. https://doi.org/10.15517/rbt.v69i1.42042

Abstract

Introduction: Knowledge on the periphytic community is essential because of its central role in river primary production. Also, periphyton is a valuable bioindicator of the community. However, to the date, little is known about the functional ecology of these communities in Colombian rivers. Objective: This work sought to characterize functional aspects of the phycoperiphytic community of four lotic systems of the La Planada Natural Reserve, located in the Department of Nariño, Colombia. Methods: In May 2019, between one and three sampling sites were established in each river. Hydrological and physicochemical variables were measured. Periphyton was sample to determine the taxonomic composition of the benthic algae as well as some functional traits. From these traits, the community weighted mean (CWM) and community weighted variance (CWV) were calculated, and their relation with abiotic variables was explored using regressions, correlations, and a canonical correspondence analysis (CCA). Results: 59 genera of algae were recorded, from which 47 had its functional traits measured. The CWM of the siliceous exoskeleton trait was statistically higher in El Tejón creek. The other traits had similar CWM and CWV values in all rivers. However, the traits of the presence of mucilage and organization in filaments showed predominance in some streams. The fluctuating data of CWV in all rivers seem to indicate that these phycoperiphytic communities have no resource limitations, competition is low, and species tend to be functionally different. The environmental variables with the greatest influence were flow, water mineralization, pH, and water transparency. The hardness of the water and the presence of mucilage were associated, while the predominance of filamentous algae was related to transparency; pH positively influenced the surface/volume ratio (S/V). Conclusions: This study represents a baseline that will allow evaluating changes in the benthic algae communities in the face of possible interventions and providing guidelines for eventual actions to restore the river systems of this important region due to its high biodiversity.

https://doi.org/10.15517/rbt.v69i1.42042
PDF (Español (España))
HTML (Español (España))

References

Ahn, C.H., Song, H.M., Lee, S., Oh, J.H., Ahn, H., Park, J.,…Joo, J.C. (2013). Effects of water velocity and specific surface area on filamentous periphyton biomass in an artificial stream mesocosm. Water, 5, 1723-1740.

Alcaldía Municipal de Ricaurte. (2006). Esquema de Ordenamiento Territorial - EOT Municipio de RICAURTE - 2006-2015. Ricaurte, Nariño, Colombia: Alcaldía Municipal.

Algarte, V.M., Pavan, G., Ferrari, F., & Ludwig, T.A. (2017a). Biological traits of diatoms in the characterization of a reservoir and a stream in a subtropical region. Brazilian Journal of Botany, 40, 137-144. Doi: 10.1007/s40415-016-0322-7

Algarte, V.M., Siqueira, T., Landeiro, V.L., Rodrigues, L., Bonecker, C.C., Rodrigues, L.C., … Bini, L.M. (2017b). Main predictors of periphyton species richness depend on adherence strategy and cell size. PLoS ONE, 12(7), e0181720. Doi: 10.1371/journal.pone.0181720

Arcos, M., Ávila, S., Estupiñán, S., & Gómez, A. (2005). Indicadores microbiológicos de contaminación de las fuentes de agua. NOVA, 3(4), 69-79. Doi: 10.22490/24629448.338

Bicudo, C., & Meneses, M. (2006). Gêneros de algas de águas continentais do Brasil: chave para identificação e descrições. (2nd Ed.). São Carlos, Brasil: Rima Editora.

Biggs, B.J.G., Stevenson, R.J., & Lowe, R.L. (1998). A habitat matrix conceptual model for stream periphyton. Archiv für Hydrobiologie, 143(1), 21-56. Doi: 10.1127/archiv-hydrobiol/143/1998/21

Breitschwerdt, E., Jandt, U., & Bruelheide, H. (2018). Using co-occurrence information and trait composition to understand individual plant performance in grassland communities. Scientific Reports, 8, 9076. Doi: 10.1038/s41598-018-27017-9

Cabildo Mayor Awa de Ricaurte Camawari. (2002). Plan de Vida Awa. Ricaurte, Nariño: Cabildo Mayor Awa de Ricaurte Camawari. Recuperado de https://siic.mininterior.gov.co/sites/default/files/plan_de_vida_awa_de_ricaurte_camawari.pdf

Cadotte, M.W. (2017). Functional traits explain ecosystem function through opposing mechanisms. Ecology Letters, 20, 989-996. Doi: 10.1111/ele.12796

Christenhusz, M.J., Fay, M.F., & Chase, M.W. (2017). Plants of the world: an illustrated encyclopedia of vascular plants. London, UK: Kew Publishing.

Córdova-Tapia, F., & Zambrano, L. (2015). La diversidad funcional en la ecología de comunidades. Ecosistemas, 24(3), 78-87. Doi: 10.7818/ECOS.2015.24-3.10

Cornwell, W.K., & Ackerly, D.D. (2009) Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California. Ecological Monographs, 79(1), 109-126. Doi: 10.1890/07-1134.1

Cruz, V., & Salazar, P. (1989). Biomasa y producción primaria del perifiton en una sábana inundable de Venezuela. Revue d'Hydrobiologie Tropicale, 22(3), 213-222.

Donato, J., & Martínez, L.F. (2003). Efectos del caudal sobre la colonización de algas en un río de alta montaña tropical (Boyacá, Colombia). Caldasia, 25(2), 337-354.

Dunck, B., Rodrigues, L., & Bicudo, D.C. (2015). Functional diversity and functional traits of periphytic algae during a short-term successional process in a Neotropical floodplain lake. Brazilian Journal of Biology, 75(3), 587-597. Doi: 10.1590/1519-6984.17813

Fan, N., Liu, Y., An, S., Wang, Z., Yang, H., Wu, C., & Zhan, J. (2006). Electrical conductivity as an indicator of hydrological characteristics in catchment scale. The Journal of Applied Ecology, 17(11), 2127-31.

Gari, N., & Corigliano, M. (2004). La estructura del perifiton y de la deriva algal en arroyos serranos. Limnetica, 23(1-2), 11-24. Doi: 10.23818/limn.23.02

Garnier, E., Cortez, J., Billes, G., Navas, M.L., Roumet, C., Debussche, M., … Toussanit, J.P. (2004) Plant functional markers capture ecosystem properties during secondary succession. Ecology, 85(9), 2630-2637. Doi: 10.1890/03-0799

Godoy-Lozada, D., & Pelaez-Rodriguez, M. (2020). Diversidad y distribución de la comunidad fitoperifítica presente en un río andino amazónico y su relación con variables ambientales. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 44(171), 437-451. Doi: 10.18257/raccefyn.1098

Guiry, M.D., & Guiry, G.M. (2020). AlgaeBase (Data Base). Galway, UK: National University of Ireland. Recuperado de https://www.algaebase.org; searched on 14 October 2020.

Hammer, Ø., Harper, D.A., & Ryan, P.D. (2001). PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4(1), 1-9. Recuperado de https://palaeo-electronica.org/2001_1/past/past.pdf

Hernández, E. (2011). Respuesta morfológica y pigmentaria del fitoplancton en seis sistemas leníticos de las regiones Caribe, Andina y Amazónica de Colombia (Tesis Doctoral). Universidad de Antioquia, Medellín, Colombia.

Hernández, E., Aguirre, N., Palacio, K., Palacio, J., Ramírez, J.J., Duque, S.R., … Kruk, C. (2020). Clasificación de grupos morfofuncionales del fitoplancton en seis sistemas lénticos de las regiones Caribe, Andina y Amazónica de Colombia. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 44(171), 392-406. Doi: 10.18257/raccefyn.1082

Higgins, M.J., Crawford, S.A., Mulvaney, P., & Wetherbee, R. (2002). Characterization of the adhesive mucilages secreted by live diatom cells using Atomic Force Microscopy. Protist, 153(1), 25-38. Doi: 10.1078/1434-4610-00080

Hillebrand, H., Dürselen, C.D., Kirschtel, D., Pollingher, U., & Zohary, T. (1999). Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology, 35(2), 403-424. Doi: 10.1046/j.1529-8817.1999.3520403.x

Huertas-Farías, K., Parra, Y.T., & Reinoso, G. (2019). Aspectos ecológicos de la comunidad fitoperifítica en el río Anchique, cuenca andina colombiana. Revista Academica Colombiana de Ciencias Exactas, Físicas y Naturales, 43(166), 98-107. Doi: 10.18257/rCCAefyn.722

Hulshof, C.M., Violle, C., Spasojevic, M.J., McGill, B., Damschen, E., Harrison, S., & Enquist, B.J. (2013). Intra-specific and inter-specific variation in specific leaf area reveal the importance of abiotic and biotic drivers of species diversity across elevation and latitude. Journal of Vegetation Science, 24(5), 921-931. Doi: 10.1111/jvs.12041

Jacobsen, D. (2008). Tropical high-altitude streams. In D. Dudgeon (Ed.), Tropical Stream Ecology (pp. 219-256). San Diego, CA, USA: Academic Press.

Kilroy, C. (2004). Guide to common diatom genera in freshwaters. Uppsala, Sweden: Uppsala University.

Lamberti, G.A. (1966). The role of periphyton in benthic food webs. In R.J. Stevenson, M.L. Bothwell, & M.L. Lowe (Eds.), Algal Ecology Freshwater benthic ecosystems (pp. 533-572). San Diego, USA: Academic Press.

Lange, K., Townsend, C.R., & Matthaei, C.D. (2015). A trait-based framework for stream algal communities. Ecology and Evolution, 6(1), 23-36. Doi: 10.1002/ece3.1822

Le Bagousse-Pinguet, Y., Gross, N., Maestre, F.T., Maire, V., de Bello, F., Fonseca, C.R., …Liancourt, P. (2017). Testing the environmental filtering concept in global drylands. Journal of Ecology, 105(4), 1058-1069. Doi: 10.1111/1365-2745.12735

Lewis, W.M. (1976). Surface/volume ratio: implications for phytoplankton morphology. Science, 192(4242), 885-887. Doi: 10.1126/science.192.4242.885

Lund, J.W., Kilpling, C., & LeCren, E.D. (1958). The inverted microscope method of estimating algal numbers, and the statistical basis of estimation by counting. Hydrobiologia, 11, 143-170. Doi: 10.1007/BF00007865

Mann, R., Hyne, R., Choung, C., & Wilson, S. (2009). Amphibians and agricultural chemicals: review of the risks in a complex environment. Environmental Pollution, 157(11), 2903-2927. Doi: 10.1016/j.envpol.2009.05.015

Marciales-Caro, L. (2012). Diversidad de grupos funcionales basados en la morfología del fitoplancton en humedales de la Orinoquía colombiana (Tesis de Maestría). Universidad de los Andes, Bogotá, Colombia.

Margalef, R. (1978). Life-forms of phytoplankton as survival alternatives in an unstable environment. Oceanica Acta, 1(4), 493-509.

Montoya, Y., & Aguirre, N. (2013). Estado del arte del conocimiento sobre perifiton en Colombia. Gestión y Ambiente, 16(3), 91-117.

Mora, P. (2011). Comparación de la morfología funcional del fitoplancton y su relación con factores físicos y químicos en el primer periodo del 2007 y 2011, en el tercio alto del humedal Juan Amarillo (Tesis de Pregrado). Pontificia Universidad Javeriana, Bogotá, Colombia.

Moschini-Carlos, V., Henry, R., & Pompêo, M. (2000). Seasonal variation of biomass and productivity of the periphytic community on artificial substrata in the Jurumirim Reservoir (São Paulo, Brazil). Hydrobiologia, 434, 35-40. Doi: 10.1023/A:1004086623922

Muñoz-López, C.L., Aranguren-Riaño, N.J., & Duque, S.R. (2017). Morfología funcional del fitoplancton en un lago de alta montaña tropical: Lago de Tota (Boyacá-Colombia). Revista de Biología Tropical, 65(2), 669-683. Doi: 10.15517/rbt.v65i2.23903

Muscarella, R, & Uriarte, M. (2016). Do community-weighted mean functional traits reflect optimal strategies? Proceedings of the Royal Society, 283: 20152434. Doi: 10.1098/rspb.2015.2434

Najdek, M., Blazina, M., Djakovac, T., & Kraus, R. (2005). The role of the diatom Cylindrotheca closterium in a mucilage event in the Northern Adriatic Sea: coupling with high salinity water intrusions. Journal of Plankton Research, 27(9), 851-862. Doi: 10.1093/plankt/fbi057

Necchi Jr., O. (Ed.). (2016). River algae. Cham, Switzerland: Springer International Publishing.

Palmer, M.W. (1993). Putting things in even better order: the advantages of Canonical Correspondence Analysis. Ecology, 74(8), 2215-2230. Doi: 10.2307/1939575

Pastrana, E. (2016). Relación de grupos funcionales fitoplanctónicos basados en su morfología presentes en el embalse de betania durante dos periodos hidrológicos, Yaguará (Huila). Revista Agropecuaria y Agroindustrial La Angostura, 3(3), 35-43.

Patrick, R. (1949). A proposed biological measure of stream conditions, based on a survey of the Conestoga basin, Lacaster County, Pennsylvania. Proceedings of the Academy of Natural Sciences of Philadelphia, 101, 277-341.

Patrick, R. (1950). A proposed biological measure of stream conditions. SIL Proceedings, 1922-2010, 11(1), 299-307. Doi: 10.1080/03680770.1950.11895240

Pérez-Escobar, O.A., Lucas, E., Jaramillo, C., Monro, A., Morris, S.K., Bogarín, D., …Antonelli, A. (2019). The origin and diversification of the hyperdiverse flora in the Chocó Biogeographic Region. Frontiers in Plant Science, 10, 1328. Doi: 10.3389/fpls.2019.01328

Pinilla, G. (2017). Prácticas de limnología. Guías de laboratorio y campo. Bogotá, Colombia: Facultad de Ciencias, Universidad Nacional de Colombia.

Pizarro, H., & Alemanni, M. (2005). Variables físico-químicas del agua y su influencia en la biomasa del perifiton en un tramo inferior del Río Luján (Provincia de Buenos Aires). Ecologia Austral, 15(1), 73-88.

Pulido, P.C. (2015). El fitoplancton en la determinación del estado trófico del humedal El Salitre (Bogotá D.C., Colombia) en épocas climáticas contrastantes (Tesis de Maestría). Universidad de Bogotá Jorge Tadeo Lozano, Bogotá, Colombia.

Ramírez, A.M., & Plata-Díaz, Y. (2008). Diatomeas perifíticas en diferentes tramos de dos sistemas lóticos de alta montaña (Páramo de Santurbán, Norte de Santander, Colombia) y su relación con las variables ambientales. Acta Biológica Colombiana, 13(1), 199-215.

Ramírez, J.J. (2000). Fitoplancton de agua dulce: aspectos ecologicos, taxonomicos y sanitarios. Medellín, Colombia: Universidad de Antioquia.

Reynolds, C.S. (1980). Phytoplankton assemblages and their periodicity in stratifying lake systems. Ecograghy, 3(3), 141-159. Doi: 10.1111/j.1600-0587.1980.tb00721.x

Rice, E., Baird, R., Eaton, A., & Clesceri, L. (2012). Standard methods for the examination of water and wastewater (22nd Ed.). Washington D.C., USA: American Public Health Association (APHA), American Water Works Association (AWWA), Water Environment Federation (WEF).

Rivera-Rondón, C.A., & Díaz-Quirós, C. (2004). Diatomeas de pequeños ríos andinos y su utilización como indicadoras de condiciones ambientales. Caldasia, 6(2), 381-394.

Rodríguez, P.L. (2008). Estructura y producción primaria del fitoplancton y perifiton en un humedal del bajo Paraná (Tesis Doctoral). Universidad de Buenos Aires, Buenos Aires, Argentina.

Roldán, P., & Ramírez, J. (2008). Fundamentos de limnología neotropical (2ª ed.). Medellín, Colombia: Universidad de Antioquia.

Salgado-Negret, B., & Paz, H. (2015). Escalando de los rasgos funcionales a procesos poblacionales, comunitarios y ecosistémicos. En B. Salgado-Negret (Ed.), La ecología funcional como aproximación al estudio, manejo y conservación de la biodiversidad: protocolos y aplicaciones (pp. 12-36). Bogotá, Colombia: Instituto de Investigación de Recursos Biológicos Alexander von Humboldt.

Schneider, C.A., Rasband, W.S., & Eliceiri, K.W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 9, 671-675. Doi: 10.1038/nmeth.2089

Sun, J., & Liu, D. (2003). Geometric models for calculating cell biovolume and surface area for phytoplankton. Journal of Plankton Research, 25(11), 1331-1346. Doi: 10.1093/plankt/fbg096

Tapolczai, K., Bouchez, A., Stenger-Kovás, C., Padisák, J, & Rimet, F. (2016). Trait-based ecological classifications for benthic algae: review and perspectives. Hydrobiologia, 776, 1-17. Doi: 10.1007/s10750-016-2736-4

The Inkscape Project. (2020). Inkscape. Recuperado de http://www.inkscape.org

Vallejo, M., Samper, C., Mendoza, H., & Otero, J.T. (2004). La Planada forest dynamics plot, Colombia. In E. Losos, & E.G. Leigh Jr. (Eds.), Tropical forest diversity and dynamism: findings from a large scale plot network (pp. 517-526). Chicago, USA: University of Chicago Press.

Violle, C., Navas, M.L., Vile, D., Kazakou, E., Fortunel, C., Hummel, I., & Garnier, E. (2007). Let the concept of trait be functional! Oikos, 116, 882-892. Doi: 10.1111/j.0030-1299.2007.15559.x

Violle, C., Enquist, B.J., McGill, J.B., Jiang, L., Albert, C.H., Hulshof, C., … Messier, J. (2012). The return of the variance: intraspecific variability in community ecology. Trends in Ecology and Evolution, 27(4), 244-252. Doi: 10.1016/j.tree.2011.11.014

Wetzel, R. (1983). Periphyton of freshwater ecosystems. Proceedings of the First International Workshop on Periphyton of Freshwater Ecosystems held in Växjö, Sweden, 14-17 September 1982. The Hague, The Netherlands: Dr. W. Junk Publishers.

Whitford, L.A., & Schumacher, G.J. (1969). A manual of the fresh-water algae in North Carolina. North Carolina, USA: The North Carolina Agricultural Experiment Station.

Withersa, P.J., & Jarvie, H.P. (2008). Delivery and cycling of phosphorus in rivers: a review. Science of the Total Environment, 400, 379-395. Doi: 10.1016/j.scitotenv.2008.08.002

Comments

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2021 Mayra Camila Guerrero Lizarazo, Gabriel Pinilla Agudelo, Ingrid Julieth Estrada Galindo

Downloads

Download data is not yet available.