Revista de Biología Tropical ISSN Impreso: 0034-7744 ISSN electrónico: 2215-2075

OAI: https://revistas.ucr.ac.cr/index.php/rbt/oai
Berberine, curcumin and quercetin as potential antiparasitic agents.
PDF (Español (España))
HTML (Español (España))

Keywords

antiparasitic activity
antiparasitics
berberine
curcumin
quercetin
actividad antiparasitaria
antiparasitarios
berberina
curcumina
quercetina

How to Cite

Elizondo-Luévano, J. H., Hernández-García, M. E., Pérez-Narváez, O. A., Castro-Ríos, R., & Chávez-Montes, A. (2020). Berberine, curcumin and quercetin as potential antiparasitic agents.: Potential agents with antiparasitic capacity. Revista De Biología Tropical, 68(4), 1241–1249. https://doi.org/10.15517/rbt.v68i4.42094

Abstract

Introduction: The indiscriminate use of antiparasitic agents has resulted in the establishment of resistance to them. Therefore, the development of new treatment alternatives is necessary. Natural products have various qualities as possible adjuvants in therapies against different etiological agents, among which its antiparasitic effects stand out. Objective: To evaluate the antiparasitic, antioxidant, cytotoxic, and cytoprotective activity of Berberine (Ber), Curcumin (Cur), and Quercetin (Qr). Methods: Analytical grade Ber, Cur, and Qr solutions were prepared, and aliquots were made at different concentrations for their evaluation against Entamoeba histolytica, Trichomonas vaginalis, and Strongyloides venezuelensis. To do this, the mean inhibitory concentration (IC50) was determined, and the antioxidant capacity (EC50) was also determined by the DPPH assay, both using the Probit statistical test. The cytotoxic and cytoprotective activity was determined by the hemolysis technique, Anova and Tukey's test were applied to determine the difference in the means in the treatments evaluated. Results: Ber, Cur, and Qr, showed activity against E. histolytica, T. vaginalis, and S. venezuelensis in-vitro. Ber presented IC50 of 1.7, 1.2, and 1.9 μM respectively, being more effective compared to Cur with IC50 of 55.3, 40.6, and 13.7 μM, or Qr with IC50 of 147.2, 93.2, and 110.9 μM, however, the best antioxidant activity (EC50 = 1.1 μg/ml), cytoprotective and less hemolytic, was presented by Qr (P < 0.001) compared to the evaluated control. Conclusions: The metabolites of natural origin berberine, curcumin, and quercetin, have activity against trophozoites of E. histolytica, T. vaginalis and larvae of S. venezuelensis in low doses comparable to the reference drugs in the case of Ber. Furthermore, these non-synthetic products of natural origin could be the subject of future research to help treat parasitosis, since in low doses, they showed antioxidant activity without showing considerable cytotoxicity in human erythrocytes.

https://doi.org/10.15517/rbt.v68i4.42094
PDF (Español (España))
HTML (Español (España))

References

Altemimi, A., Lakhssassi, N., Baharlouei, A., Watson, D.G., & Lightfoot, D.A. (2017). Phytochemicals: Extraction, Isolation, and Identification of Bioactive Compounds from Plant Extracts. Plants, 6(4), 42.

Andersen, B.J., Rosa, B.A., Kupritz, J., Meite, A., Serge, T., Hertz, M.I., …Weil, G.J. (2019). Systems analysis-based assessment of post-treatment adverse events in lymphatic filariasis. PLoS Neglected Tropical Diseases, 13(9), 1-27.

Aquino, P., Gomes-Figueredo, F., Pereira, N., Nascimento, E., Martin, A., Veras, H., … Menezes, I. (2016). Avaliação da atividade anti-inflamatória tópica e antibacteriana do extrato metanólico das folhas de Sideroxylon obtusifolium. Acta Biológica Colombiana, 21(1), 131-140.

Caddeo, C., Gabriele, M., Fernández-Busquets, X., Valenti, D., Fadda, A.M., Pucci, L., & Manconi, M. (2019). Antioxidant activity of quercetin in Eudragit-coated liposomes for intestinal delivery. International Journal of Pharmaceutics, 565, 64-69.

da Silva, A.F., da Rocha, C.Q., da Silva, L., Carvalho Júnior, A.R., Mendes, I., de Araruna, A.B., … Monteiro, C.A. (2020). Antifungal and Antivirulence Activities of Hydroalcoholic Extract and Fractions of Platonia insignis Leaves against Vaginal Isolates of Candida Species. Pathogens, 9(2), 84.

Dingsdag, S.A., & Hunter, N. (2018). Metronidazole: an update on metabolism, structure-cytotoxicity and resistance mechanisms. The Journal of Antimicrobial Chemotherapy, 73(2), 265-279.

Elizondo-Luévano, J.H., Castro-Ríos, R., Sánchez-García, E., Hernández-García, M.E., Vargas-Villarreal, J., Rodríguez-Luis, O.E., & Chávez-Montes, A. (2018). In Vitro Study of Antiamoebic Activity of Methanol Extracts of Argemone mexicana on Trophozoites of Entamoeba histolytica HM1-IMSS. The Canadian Journal of Infectious Diseases & Medical Microbiology = Journal Canadien Des Maladies Infectieuses et de La Microbiologie Medicale, 2018, 7453787.

Elizondo-Luevano, J.H., Verde-Star, J., González-Horta, A., Castro-Ríos, R., Hernández-García, M.E., & Chávez-Montes, A. (2020). In Vitro Effect of Methanolic Extract of Argemone mexicana against Trichomonas vaginalis. The Korean Journal of Parasitology, 58(2), 135-145.

Ghosh, A.P., Aycock, C., & Schwebke, J.R. (2018). In Vitro Study of the Susceptibility of Clinical Isolates of Trichomonas vaginalis to Metronidazole and Secnidazole. Antimicrobial Agents and Chemotherapy, 62(4), e02329-17.

Gull, T., Anwar, F., Sultana, B., Alcayde, M.A.C., & Nouman, W. (2015). Capparis species: A potential source of bioactives and high-value components: A review. Industrial Crops and Products, 67, 81-96.

Hatia, S., Septembre-Malaterre, A., Le Sage, F., Badiou-Bénéteau, A., Baret, P., Payet, B., … Gonthier, M.P. (2014). Evaluation of antioxidant properties of major dietary polyphenols and their protective effect on 3T3-L1 preadipocytes and red blood cells exposed to oxidative stress. Free Radical Research, 48(4), 387-401.

Hayat, F., Azam, A., & Shin, D. (2016). Recent progress on the discovery of antiamoebic agents. Bioorganic and Medicinal Chemistry Letters, 26(21), 5149-5159.

Lee, J., & Ryu, J.S. (2019). Current Status of Parasite Infections in Indonesia: A Literature Review. The Korean Journal of Parasitology, 57(4), 329-339.

Legarda-Ceballos, A.L., Rojas-Caraballo, J., López-Abán, J., Ruano, A.L., Yepes, E., Gajate, C., Mollinedo, F., & Muro, A. (2016). The alkylphospholipid edelfosine shows activity against Strongyloides venezuelensis and induces apoptosis-like cell death. Acta Tropica, 162, 180-187.

Ndjonka, D., Rapado, L.N., Silber, A.M., Liebau, E., & Wrenger, C. (2013). Natural products as a source for treating neglected parasitic diseases. International Journal of Molecular Sciences, 14(2), 3395-3439.

Pongkittiphan, V., Chavasiri, W., & Supabphol, R. (2015). Antioxidant effect of berberine and its phenolic derivatives against human fibrosarcoma cells. Asian Pacific Journal of Cancer Prevention, 16(13), 5371-5376.

Pozio, E. (2020). How globalization and climate change could affect foodborne parasites. Experimental Parasitology, 208, 107807.

Pozzo, L., Russo, R., Frassinetti, S., Vizzarri, F., Árvay, J., Vornoli, A., … Longo, V. (2020). Wild Italian Prunus spinosa L. Fruit Exerts In Vitro Antimicrobial Activity and Protects Against In Vitro and In Vivo Oxidative Stress. Foods, 9(1), 5.

Sharifi-Rad, M., Epifano, F., Fiorito, S., & Álvarez-Suarez, J.M. (2020). Phytochemical analysis and biological investigation of Nepeta juncea Benth. different extracts. Plants, 9(5), 646.

Rangel-Castañeda, I.A., Carranza-Rosales, P., Guzmán-Delgado, N.E., Hernández-Hernández, J.M., González-Pozos, S., Pérez-Rangel, A., & Castillo-Romero, A. (2019). Curcumin attenuates the pathogenicity of Entamoeba histolytica by regulating the expression of virulence factors in an Ex-Vivo model Infection. Pathogens, 8(3), 127.

Rodríguez-Magaña, M.P., Cordero-Pérez, P., Rivas-Morales, C., Oranday-Cárdenas, M.A., Moreno-Peña, D.P., García-Hernández, D.G., & Leos-Rivas, C. (2019). Hypoglycemic Activity of Tilia americana, Borago officinalis, Chenopodium nuttalliae, and Piper sanctum on Wistar Rats. Journal of Diabetes Research, 2019, 7836820.

Shen, C.Y., Jiang, J.G., Yang, L., Wang, D.W., & Zhu, W. (2017). Anti-ageing active ingredients from herbs and nutraceuticals used in traditional Chinese medicine: pharmacological mechanisms and implications for drug discovery. British Journal of Pharmacology, 174(11), 1395-1425.

Siles-Lucas, M., Casulli, A., Cirilli, R., & Carmena, D. (2018). Progress in the pharmacological treatment of human cystic and alveolar echinococcosis: Compounds and therapeutic targets. PLoS Neglected Tropical Diseases, 12(4), e0006422.

Spencer, L.M., Peña-Quintero, A., Canudas, N., Bujosa, I., & Urdaneta, N. (2018). Antimalarial effect of two photo-excitable compounds in a murine model with Plasmodium berghei (Haemosporida: Plasmodiidae). Revista de Biología Tropical, 66(2), 880-891.

Xu, D., Hu, M.J., Wang, Y.Q., & Cui, Y.L. (2019). Antioxidant activities of quercetin and its complexes for medicinal application. Molecules, 24(6), 1123.

Yones, D.A., Badary, D.M., Sayed, H.M., Bayoumi, S.A., Khalifa, A.A., & El-Moghazy, A.M. (2016). Comparative Evaluation of Anthelmintic Activity of Edible and Ornamental Pomegranate Ethanolic Extracts against Schistosoma mansoni. BioMed Research International, 2016, 2872708.

Comments

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2020 Joel Horacio Elizondo Luevano, Magda Elizabeth Hernández García, Dra., Oscar Alberto Pérez Narváez, Dr., Rocío Castro Ríos, Dra., Abelardo Chávez Montes, Dr.

Downloads

Download data is not yet available.