Abstract
Introduction: H. perotensis is a plant with a high potential for ecological restoration because it yields thousands of seeds and grows under low levels of rain, poor soils and contrasting temperatures. However, little is known of the seed mass maturity (high seed germination, low seed fresh weight and low seed moisture content) in this species. Objective: Assess seed germination in the laboratory of H. perotensis during seed development and along the floral stalk (infructescence) in two sites one in rocky location and another near a lake. The hypothesis was that there is a time after flowering in which seeds have highest germination and fresh weight and that the apical, centre and base of the infructescence are different in seed germination and fresh weight in both sites. Methods: Capsules were collected in two sites one in rocky land (Frijol Colorado, Perote, Veracruz) and another near one lake (Alchichica, Puebla), in the months of August, September and November 2016 and January 2017. A repeated measure design (RMD) was used to analyze the effects of infructescence section on seed weight, moisture content and seed germination (41, 87, 152 and 215 days after flowering). Each evaluation time comprised five replicates, each one with 15 seeds. Results: Difference in seed germination, seed weight and moisture content between sections of the infructescence was not significant. However, significant differences were found not only between first and last sample dates, buy mainly between first and second dates. Eighty-seven days after flower pollination seed moisture content was lower than 20 % and up to 80 % of seed germinated in both sites of sampling. Conclusions: In this study it was found that the moisture content of H. perotensis seed can be used as an indicator of the physiological maturity of the seed and it is also related to germination of the seed.
References
Baskin, C., & Baskin, J. (1998). Seeds: ecology, biogeography, and evolution of dormancy and germination. Academic Press.
Bewley, J., Bradford, K., Hilhorst, H., & Nonogaki, H. (2013). Physiology of development, germination and dormancy. Springer Science Business Media.
Bhardwaj, S., Panwar, P., & Kumar, M. (2002). Physical and biochemical changes in seeds as maturity index for harvesting Albizia lebbeck seeds. Journal of Hill Research, 15(1), 52–55.
Bhawna, T., Ashish, T., Shruti, S., & Neerja, P. (2011). Physical attributes as indicator of seed maturity and germination enhancement in Himalayan Wild Cherry (Prunus cerasoides D. Don.). New Forests, 41, 139–146.
Elizalde, V., García, J., Peña-Valdivia, C., Ybarra, C., Leyva, O., & Trejo, C. (2017). Viabilidad y germinación de semillas de Hechtia perotensis (Bromeliaceae). [Seed viability and germination of Hechtia (Bromeliaceae)]. Revista de Biología Tropical, 65(1), 153-165.
Escobedo, S. (2012). Mecanismos de dispersión de semillas en las Bromelias. Desde el herbario CICY 4: 22-23. http://www.cicy.mx/sitios/desde_herbario/
Espejo, S., López, F., Ramírez, M., & Martínez, C. (2007). Dos nuevas especies de Hechtia (Bromeliaceae) de México. Acta Botánica Mexicana, 78, 97–109.
García, E. (1988). Modificaciones al sistema de clasificación climática de Köppen. Universidad Nacional Autónoma de México.
Gesch, R., Royo-Esnal, A., Edo-Tena, E., Recasens, J., Isbell, T., & Forcella, F. (2016). Growth environment but not seed position on the parent plant affect seed germination of two Thlaspi arvense L. populations. Industrial Crops and Products, 84, 241–247.
Google Earth. (n.d.-a). Frijol Colorado, Perote, Veracruz. Recover on july 14, 2021 from https://earth.google.com/web/search/frijol+colorado/@19.55318431,-97.37798852,2433.58431515a,10930.6604354d,34.99998921y,0h,0t,0r/data=CigiJgokCYtftwEzbTNAEZ9j_ux9aTNAGTSh-p_gWFjAISX4BY4tWljA
Google Earth. (n.d.-b). Alchichica, Puebla. Recover on july 14, 2021 from https://earth.google.com/web/search/alchichica+puebla/@19.41931892,-97.39887023,2323.53443059a,681.20123398d,30.0000019y,0h,0t,0r/data=CigiJgokCZeewHXSnjNAEb7OAbWWjzNAGbzLrRTaUljAIeXtrkCwW1jA
Gray, D., & Thomas, T. (1982). Seed germination and seedling emergence as influenced by the position of development of the seed on, and chemical applications to, the parent plant. In A. A. Khan (Ed.), The Physiology and Biochemistry of Seed Development, Dormancy and Germination (pp. 81–110). Elsevier Biochemical Press.
Gutterman, Y. (1980). Annual rhythm and position effect in the germinability of Mesymbranthemum nodiflorum. Israel Journal of Botany, 29, 93–97.
Hay, F., & Probert, R. (1995). The effect of different drying conditions and maturity on desiccation tolerance and seed longevity in Digitalis purpurea L. Annals of Botany, 76, 639–647.
Hegland, S., Nielsen, A., Lazaro, A., Bjerknes, A., & Totland, O. (2009). How does climate warming affect plant-pollinator interactions? Ecology Letters, 12, 184–195.
International Seed Testing Association (2010). International Rules for Seed Testing. International Seed Testing Association.
Kaliangile, I., & Grabe, D. (1988). Seed maturation in Cuphea. Journal of Seed Technology, 12(2), 107–113.
Leck, M., Parker, V., & Simpson, R. (2008). Seedling ecology and evolution. Cambridge University Press.
Mai-Hong, T., Hong, T.D., Hien, N.T., & Ellis, R.H. (2003). Onset of germinability, desiccation tolerance and hardseededness in developing seeds of Peltophorum pterocarpum (DC) k. Heyne (Caesalpinioideae). Seed Science Research, 13, 323-327.
Majeed, M., Khan, M., Bashir, A., & Qaisar, K. (2010). Maturity indices of Indian horse chestnut (Aesculus indica Colebr.) seeds under temperate Kashmir conditions. Forestry Studies in China, 12(1), 45–48.
McKinney, A., CaraDonna, P., Inouye, D., Barr, B., Bertelsen, C., & Waser, N. (2012). Asynchronous changes in phenology of migrating Broad-tailed Hummingbirds and their early-season nectar resources. Ecology, 93, 1987–1993.
Pieta, F., & Ellis, R. (1991). The development of seed quality in spring barley in four environments. I. Germination and longevity. Seed Science Research, 1, 163–177.
Ramírez, M., & Jiménez, C. (2012). A new species of Hechtia (Hechtioideae: Bromeliaceae) from Puebla, Mexico. Phytotaxa, 42, 1–8.
Ramírez, M., Jiménez, F., Fernández-Concha, G., & Pinzón, J. (2014). Three new species and growth patterns in Hechtia (Bromeliaceae: Hechtioideae). Phytotaxa, 178, 113–127.
Ramírez, M., Carrillo, R., Tapia, M., & Cetzal, I. (2016). An addition to genus Hechtia (Hechtioideae; Bromeliaceae) from Jalisco, Mexico. Phytotaxa, 266(4), 261–270.
Reyes, S. (2015). Conservación y restauración de cactáceas y otras plantas suculentas mexicanas. Comisión Nacional Forestal.
Sanhewe, A., & Ellis, R. (1996). Seed development and maturation in Phaseolus vulgaris. II. Post-harvest longevity in air-dry storage. Journal of Experimental Botany, 47, 959–965.
Sankhla, R., & Chawan, D. (1980). Effect of different seed moisture levels on the germination behaviour of Phaseolue trilobus. Biología Plantarum, 22(5), 388–391.
Shah, S., Tewari, A., & Bisht, S. (2006). Seed maturation indicators in Pyracantha crenulata Roxb. in Kumaun central Himalaya. New Forests, 32, 1–7.
Shah, S., Tewari, A., Tewari, B., & Singh, R. (2010). Seed maturity indicators in Myrica esculenta, Buch-Ham. Ex. D. Don.: a multipurpose tree species of subtropical temperate Himalayan region. New Forests, 40, 9–18.
Vallejos, M., Rondanini, D., & Wassner, F. (2011). Water relationships of castor bean (Ricinus communis L.) seeds related to final seed dry weight and physiological maturity. European Journal of Agronomy, 35, 93–101.
Willan, R. (1985). A guide to forest seed handling. FAO Forestry paper 20/2. FAO.
Willson, M., & Price, P. (1977). The evolution of inflorescence size in Asclepius (Asclepiadaceae). Evolution, 31, 495-511.
Comments
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright (c) 2021 Violeta Elizalde, José Rodolfo García, Carlos Trejo, Cecilia Beatriz Peña-Valdivia, Ma. Carmen Ybarra, Otto Raúl Leyva