Revista de Biología Tropical ISSN Impreso: 0034-7744 ISSN electrónico: 2215-2075

OAI: https://revistas.ucr.ac.cr/index.php/rbt/oai
Trap rebuilding by Myrmeleon brasiliensis larvae (Neuroptera: Myrmeleontidae) in response to flooding: the effect of body size
PDF
HTML

Keywords

antlion
construction behaviour
foraging
Myrmeleontinae
rainfall
hormiga-león
comportamiento de construcción
forrajeo
Myrmeleontinae
lluvia

How to Cite

de Oliveira Leite, V. G., Aquino Florenciano, R. B., Gamarra Arguelho, E., & do Nascimento Lima, T. (2021). Trap rebuilding by Myrmeleon brasiliensis larvae (Neuroptera: Myrmeleontidae) in response to flooding: the effect of body size. Revista De Biología Tropical, 69(4), 1224–1232. https://doi.org/10.15517/rbt.v69i4.44478

Abstract

Introduction: Immature forms of the antlion Myrmeleon brasiliensis (Neuroptera, Myrmeleontidae) build traps in dry sandy soil to capture prey. Objective: The aim of the present study was to investigate how the waterlogging of the soil due to rain affects the trap rebuilding and relocation behavior of M. brasiliensis of different sizes. Methods: The study was conducted between July and December 2019. Larvae M. brasiliensis were observed and collected from a forest reserve in the municipality of Aquidauana in the state of Mato Grosso do Sul, Brazil. Results: In the natural environment, most larvae rebuilt their traps in the same location seven days after the simulation of rain, with a smaller diameter than that observed prior to the simulation of rain. In the laboratory, the movements of M. brasiliensis larvae and rebuilding of the traps after the waterlogging of the soil was affected by body size. Larger larvae moved more and were more likely to rebuild their traps. Conclusions: The saturation of the soil affects the foraging of M. brasiliensis larvae, which are impeded from rebuilding their traps for a period. In situations of long periods of saturated soil, the mortality rate of the larvae is high and rebuilding of the traps occurs after the soil dries out, but with a smaller trap size. These data suggest that changes in the rainfall pattern can affect the population structure of M. brasiliensis larvae, with the selection of larger individuals in situations of more severe rains. In this process, the smaller larvae are more affected, as their foraging is impeded.

https://doi.org/10.15517/rbt.v69i4.44478
PDF
HTML

References

Alcock, J. (1972). The evolution of tools by feeding animals. Evolution, 26(3), 464–473.

Boake, C. R. E., Andow, D., & Visscher, P. K. (1984). Spacing of antlions and their pits. American Midland Naturalist, 111(1), 192–194.

Botz, J. T., Loudon, C., Barger, J. B., Olafssen, J. S., & Steeples, D. W. (2003). Effects of slope and particle size on ant locomotion: implications for choice of substrate. Journal of the Kansas Entomological Society, 76(3), 426–435.

Burgess, M. G. (2009). Sub-optimal pit construction in predatory ant lion larvae (Myrmeleon sp.). Journal of Theoretical Biology, 260(3), 379–385.

Coutinho, L. M. (2000). O bioma do Cerrado. In A. L. Klein (Ed.), Eugen Warming e o Cerrado brasileiro: um século depois (pp. 77–92). Editora UNESP.

Crowley, P. H., & Linton, M. C. (1999). Antlion foraging: tracking prey across space and time. Ecology, 80(7), 2271–2282.

Day, M. D., & Zalucki, M. P. (2000). Effect of density on spatial distribution, pit formation and pit diameter of Myrmeleon acer Walker, (Neuroptera: Myrmeleontidae): patterns and processes. Austral Ecology, 25(1), 58–64.

Devetak, D., & Arnett, A. E. (2015). Preference of antlion and wormlion larvae (Neuroptera: Myrmeleontidae; Diptera: Vermileonidae) for substrates according to substrate particle sizes. European Journal of Entomology, 112(3), 500–509.

Devetak, D., Podlesnik, J., Scharf, I., & Klenovšek, T. (2020). Fine sand particles enable antlions to build pitfall traps with advanced three-dimensional geometry. Journal of Experimental Biology, 223(15).

Devetak, D., Špernjak, A., & Janžekovič, F. (2005). Substrate particle size affects pit building decision and pit size in the antlion larvae Euroleon nostras (Neuroptera: Myrmeleontidae). Physiological Entomology, 30(2), 158–163.

Dias, S. C., Santos, B. A., Werneck, F. P., Lira, P. K., Carrasco-Carbadillo, V., & Fernandes, G. W. (2006). Efficiency of prey subjugation by one species of Myrmeleon larvae (Neuroptera: Myrmeleontidae) in the central Amazonia. Brazilian Journal Biology, 66(2), 441–442.

Eltz, T. (1997). Foraging in the ant-lion Myrmeleon mobilis Hagen 1888 (Neuroptera: Myrmeleontidae): behavioral flexibility of a sit-and-wait predator. Journal of Insect Behavior, 10(1), 1–11.

Faria, M. L., Prado, P. I. L., Bede, L. C., & Fernandes, G. W. (1994). Estrutura e dinâmica de uma população de larvas de Myrmeleon uniformis (Neuroptera: Myrmeleontidae). Brazilian Journal Biology, 54(2), 335–344.

Farji-Brener, A. G. (2003). Microhabitat selection by antlion larvae, Myrmeleon crudelis: effect of soil particle size on pit-trap design and capture. Journal of Insect Behavior, 16(3), 783–796.

Fisher, M. (1989). Ant-lion life cycles in Nigeria. Journal of Tropical Ecology, 5(2), 247–250.

Freire, L. G., & Lima, T. N. (2019). Effect of rain on trap building by Myrmeleon brasiliensis. Entomologia Experimentalis et Applicata, 167(6), 561–565.

Gotelli, N. J. (1993). Ant lion zones causes of high-density predator aggregations. Ecology, 74(1), 226–237.

Griffiths, D. (1980). The feeding biology of ant-lion larvae: prey capture, handling, and utilization. Journal of Animal Ecology, 49(1), 99–125.

Griffiths, D. (1985). Phenology and larval-adult size relations in the antlions Macroleon quinquemaculatus. Journal of Animal Ecology, 54(2), 573–581.

Griffiths, D. (1993). Intraspecific competition in ant-lion (Macroleon quinquemaculatus) larvae in the field. Oecologia, 93(4), 531–537.

Hansell, M. (2007). Built by Animals: The Natural History of Animal Architecture. Oxford University Press.

Hauber, M. E. (1999). Variation in pit size of antlion (Myrmeleon carolinus) larvae: the importance of pit construction. Physiological Entomology, 24(1), 37–40.

Heinrich, B., & Heinrich, M. J. E. (1984). The pit-trapping foraging strategy of the ant lion, Myrmeleon immaculatus DeGeer (Neuroptera: Myrmeleontidae). Behavioral Ecology and Sociobiology, 14(2), 151–160.

Humeau, A., Rougé, J., & Casas, J. (2015). Optimal range of prey size for antlions. Ecological Entomology, 40(6), 776–781.

Jenkins, B. A. (1994). The behavioral response of the antlion Myrmeleon pictifrons to a sudden change in prey capture rate. Acta Oecologica, 15(2), 213–240.

Liang, S. H., Lin, W. Y., Lin, Y. C., Chen, Y. C., & Shieh, B. S. (2010). Variations in the pit size of Cueta sauteri (Neuroptera: Myrmeleontidae) larvae in response to past pit-building experience and food limitation. Zoological Studies, 49(1), 102–107.

Lima, T. N. (2016). Cannibalism among Myrmeleon brasiliensis larvae (Návas, 1914) (Neuroptera, Myrmeleontidae). Acta Scientiarum. Biological Sciences, 38(4), 447–450.

Lima, T. N., & Faria, R. R. (2007). Seleção de microhabitat por larvas de formiga-leão Myrmeleon brasiliensis (Návas) (Neuroptera: Myrmeleontidae), em uma Reserva Florestal, Aquidauana, MS. Neotropical Entomology, 36(5), 812–814.

Lima, T. L., & Lopes, F. S. (2016). Effect of density, disturbance and food on displacement of the Myrmeleon brasiliensis (Navás 1914) (Neuroptera, Myrmeleontidae). Ecologia Austral, 26(1), 166–170.

Lima, T. N., Freire, L. G., & Lima, D. C. A. (2019). Effect of asymmetric competition on distance among Myrmeleon brasiliensis (Návas, 1914) (Neuroptera: Myrmeleontidae) larvae. Acta Scientiarum. Biological Sciences, 41(1), 1–6.

Lima, T. N., & Silva, D. C. R. (2017). Effect of energetic cost to maintain the trap for Myrmeleon brasiliensis (Neuroptera, Myrmeleontidae) in its development and adult size. Brazilian Journal of Biology, 77(1), 38–42.

Lucas, J. R. (1982). The biophysics of pit construction by antlion larvae. Animal Behaviour, 30(3), 651–657.

Lucas, J. R. (1985). Metabolic rates and pit-construction costs of two antlion species. Journal of Animal Ecology, 54(1), 295–309.

Miler, K., Yahya, B. E., & Czarnoleski, M. (2019). Substrate moisture, particle size and temperature preferences of trap-building larvae of sympatric antlions and wormlions from the rainforest of Borneo. Ecological Entomology, 44(4), 488–493.

Missirian, G. B., Uchôa-Fernandes, M. A., & Fischer, E. (2006). Development of Myrmeleon brasiliensis (Navás) (Neuroptera, Myrmeleontidae), in laboratory, with different natural diets. Revista Brasileira de Zoologia, 23(4), 1044–1050.

Nonato, L. M., & Lima, T. N. (2011). Comportamiento de depredación de los estadios larvales de Myrmeleon brasiliensis (Neuroptera: Myrmeleontidae). Revista Colombiana de Entomología, 37(1), 354–356.

Ruxton, G. D., & Hansell, M. H. (2007). Why are pitfall traps so rare in the natural world? Evolutionary Ecology, 23(2), 181–186.

Scharf, I., Hollender, Y., Subach, A., & Ovadia, O. (2008). Effect of spatial pattern and microhabitat on pit construction and relocation in Myrmeleon hyalinus (Neuroptera: Myrmeleontidae) larvae. Ecological Entomology, 33(3), 337–345.

Scharf, I., & Ovadia, O. (2006). Factors influencing site abandonment and site selection in a sit-and-wait predator: A review of pit-building antlion larvae. Journal of Insect Behavior, 19(2), 197–218.

Simberloff, D., King, L., Dillon, P., Lowries, S., Lorence, D., & Schilling, E. (1978). Holes in the doughnut theory: the dispersions of ant-lions. Brenesia, 14(15), 13–46.

Triplehorn, C. A., & Johnson, N. F. (2005). Borror and delong’s introduction to the study of insects (7th Ed.). Brooks/Cole Publishing.

Youthed, G. J., & Moran, V. C. (1969). Pit construction by myrmeleontidae larvae. Journal of Insect Physiology, 15(5), 867–875.

Comments

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2021 Revista de Biología Tropical

Downloads

Download data is not yet available.