Abstract
Introduction: The fruit of the yellow mombin (Spondias mombin L.) is notable due to its sensory and functional qualities. However, there is little knowledge regarding the genetic diversity of this species, and this would aid the implantation of the cultivation of the fruit as a crop, since current production is based on extractivism. Objective: Evaluate the diversity and genetic structure of natural populations of S. mombin in the state of Mato Grosso, Brazil, through microsatellite molecular markers in order to assist in the implementation of conservation strategies and the collection of genetic resources. Methods: A total of 139 S. mombin individuals were sampled in ten natural populations. PCR amplifications were performed with seven fluorescence-marked microsatellite primers. Genetic diversity was evaluated by the number of alleles, expected (He) and observed heterozygosity (Ho), polymorphic information content (PIC), fixation index (ƒ), rare and exclusive alleles. The genetic structure was evaluated using AMOVA, UPGMA dendrogram and Bayesian statistical analysis. Results: 46 alleles were amplified, which had an average of 6.6 alleles per locus. He was higher than Ho and f was positive, indicating the presence of inbreeding. The PIC ranged from 0.048 to 0.700, and only two loci were poorly informative. We found 27 rare alleles and 16 unique alleles. The largest component of variation was intrapopulational (90.64 %). The estimated gene flow was 1.99, which indicates that there is no genetic isolation between populations, and justifies the FST value (0.0963). The ten populations were grouped into two groups, and two populations constituted an isolated group. The Mantel test demonstrated that the genetic structure is not related to the geographic distance between populations. Conclusion: There is genetic diversity in the populations of S. mombin, which must be conserved in situ or ex situ, due to the diversity they present and because they are promising sources for collection of germplasm.
References
Aguilar-Barajas, E., Sork, V. L., González-Zamora, A., Rocha-Ramírez, V., Arroyo-Rodríguez, V., & Oyama, K. (2014). Isolation and characterization of polymorphic microsatellite loci in Spondias Radlkoferi (Anacardiaceae). Applications in Plant Sciences, 2(11), 1–3. https://doi.org/10.3732/apps.1400079
Alvares, C. A., Stape, J. L., Sentelhas, P. C., Gonçalves, J. L. M., & Sparovek, G. (2013). Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, 22(6), 711–728. https://doi.org/10.1127/0941-2948/2013/0507
Arnold, C., Rossetto, M., McNally, J., & Henry, R. J. (2002). The application of SSRs characterized for grape (Vitis vinifera) to conservation studies in Vitaceae. American Journal of Botany, 89(1), 22-28. https://doi.org/10.3732/ajb.89.1.22
Azevedo, V. C. (2007). Desenvolvimento e aplicações de microssatélites, análise de cpDNA e modelagem computacional para estudos da estrutura e dinâmica genética de maçaranduba – Manilkara huberi (Ducke) Chev. Sapotaceae (Doctoral thesis). Universidade de Brasília, Brasil.
Bergier, I., Assine, M. L., McGlue, M. M., Alho, C. J. R., Silva, A., Guerreiro, R. L., & Carvalho, J. C. (2018). Amazon rainforest modulation of water security in the Pantanal wetland. Science of the Total Environment, 619-620, 1116–1125. https://doi.org/10.1016/j.scitotenv.2017.11.163
Bizotto, L. A., & Santos, R. S. S. (2015). Dinâmica de voo e coleta de recursos por Apis mellifera em pomar de macieira. Enciclopédia Biosfera, 11(21), 3499–3506.
Botstein, D., White, R. L., Skolmick, H., & Davis, R. W. (1980). Construction of a genetic linkage map in man using restriction fragment length polymorphism. American Journal of Human Genetics, 32(3), 314–331. https://doi.org/10.1007/BF00266542
Caixeta, E. T., Oliveira, A. C. B., Brito, G. G., & Sakiyama, N. S. (2016). Tipos de marcadores moleculares. En A. Borém & E. T. Caixeta (Eds.), Marcadores moleculares (1st ed., pp. 9–93). Editora UFV.
Carneiro, L. T., & Martins, C. F. (2012). Africanized honey bees pollinate and preempt the pollen of Spondias mombin (Anacardiaceae) flowers. Apidologie, 43(4), 474–486. https://doi.org/10.1007/s13592-011-0116-7
Carvalho, A. C. M., Freitas, M. L. M., Moraes, S. M. B., Moraes, M. L. T., Stranghetti, V., Alzate-Marin, A. L., & Sebbenn, A. M. (2010). Diversidade genética, endogamia e fluxo gênico em pequena população fragmentada de Copaifera langsdorffii. Revista Brasileira de Botânica, 33(4), 599–606. https://doi.org/10.1590/S0100-84042010000400008
Carvalho, C., Kist, B. B., Santos, C. E., Treichel, M., & Filter, C. F. (2017). Anuário brasileiro da fruticultura 2017. Editora Gazeta Santa Cruz.
Costa, T. S., Silva, A. V. C., Lédo, A. S., Santos, A. R. F., & Silva Júnior, J. F. (2011). Diversidade genética de acessos do banco de germoplasma de mangaba em Sergipe. Pesquisa Agropecuária Brasileira, 46(5), 499–508. https://doi.org/10.1590/S0100-204X2011000500007
Cruz, C. D. (2016). Genes Software – extended and integrated with the R, Matlab and Selegen. Acta Scientiarum Agronomy, 38(4), 547–552. https://doi.org/10.4025/actasciagron.v38i4.32629
Dardengo, J. F. E., Rossi, A. A. B., Oliveira, L. O., Pena, G. F., Rivas, L. H., Silva, C. J., & Rufatto, F. P. (2021). Structure and genetic diversity of Theobroma speciosum (Malvaceae) and implications for Brazilian Amazon conservation. Rodriguésia, 72(1), e02022018. https://doi.org/10.1590/2175-7860202172023
Doyle, J. J., & Doyle, J. L. (1987). A rapid DNA isolation procedure for small amounts of fresh leaf tissue. Phytochem Bulletin, 19(1), 11–15.
Duarte, T. E. P. N, & Leite, L. B. (2020). Cidades médias no Cerrado Brasileiro: desafios para a conservação da biodiversidade. Terra Plural, 14(1), e2013420. https://doi.org/10.5212/terraplural.v.14.2013420.006
Earl, D. A., & von Holdt, B. M. (2012). Structure Harvester: a website and program for visualizing Structure output and implementing the Evanno method. Conservation Genetics Resources, 4, 359–361. https://doi.org/10.1007/s12686-011-9548-7
Estopa, R. A., Souza, A. M., Moura, M. C. O., Botrel, M. C. G., Mendonça, E. G., & Carvalho, D. (2006). Diversidade genética em populações naturais de candeia (Eremanthus erythropappus (DC.) MacLeish). Scientia Forestalis, 70, 97–106.
Evano, G., Regnaut, S., & Goudet, J. (2005). Detecting the number of clusters of individuals using the software structure: a simulation study. Molecular Ecology, 14(8), 2611–2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x
Excoffier, L., Laval, G., & Schneider, S. (2006). Arlequin 3.01. An integrated software package for population genetics data analysis. University of Berne.
Excoffier, L., Smouse, P. E., & Quattro, J. M. (1992). Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics, 131(2), 479–491.
Faraldo, M. I. F., Silva, R. M., Ando, A., & Martins, P. S. (2000). Variabilidade genética de etnovariedades de mandioca em regiões geográficas do Brasil. Scientia Agricola, 57(3), 499–500. https://doi.org/10.1590/S0103-90162000000300020
Ferreira, M. E., & Grattapaglia, D. (1998). Introdução ao uso de marcadores moleculares em análise genética. Embrapa Recursos Genéticos e Biotecnologia.
Fidalgo, O., & Bononi, V. L. R. (1989). Técnicas de coleta, preservação e herborização de material botânico. Instituto de Botânica de São Paulo.
Freitas, D. G. C., & Mattietto, R. A. (2013). Ideal sweetness of mixed juices from Amazon fruits. Ciência e Tecnologia de Alimentos, 33(S1), 148–154. https://doi.org/10.1590/S0101-20612013000500022
Giles, J. A. D., Partelli, F. L., Ferreira, A., Rodrigues, J. P., Oliosi, G., & Lima e Silva, F. H. (2018). Genetic diversity of promising ‘conilon’ coffee clones based on morpho-agronomic variables. Annals of the Brazilian Academy of Sciences, 90(2), 2437–2446. http://dx.doi.org/10.1590/0001-3765201820170523
Giustina, L. D., Rossi, A. A. B., Vieira, F. S., Tardin, F. D., Neves, L. G., & Pereira, T. N. S. (2017). Variabilidade genética em genótipos de teca (Tectona grandis Linn, F.) baseada em marcadores moleculares ISSR e caracteres morfológicos. Ciência Florestal, 27(4), 1311–1324. https://doi.org/10.5902/1980509829894
Gois, I. B., Silva-Mann, R., & Ferreira, R. A. (2009). Variabilidade genética de Spondias lutea L. em uma população do baixo São Francisco sergipano, por meio de isoenzimas. Scientia Forestalis, 37(81), 55–60.
Heithaus, E. R., Fleming, T. H., & Opler, P. A. (1975). Foraging patterns and resource utilization in seven species of bats in a seasonal tropical forest. Ecology, 56(4), 841–854. https://doi.org/10.2307/1936295
Henry, O., Feer, F., & Sabatier, D. (2000). Diet of the Lowland Tapir (Tapirus terrestris L.) in French Guiana. Biotropica, 32(2), 364–368.
Lederman, I. E., Lira Júnior, J. S., & Silva Júnior, F. S. (2008). Spondias no Brasil: umbu, cajá e espécies afins. Empresa Pernambucana de Pesquisa Agropecuária.
Lima, A. T. B., Souza, V. A. B., Gomes, R. L. F., & Lima, P. S. C. (2011). Molecular characterization of cajá, Spondias mombin (Anacardiaceae), by RAPD markers. Genetics and Molecular Research, 10(4), 2893–2904. http://dx.doi.org/10.4238/2011.November.25.1
Liu, K., & Muse, S. (2005). PowerMarker: Integrated analysis environment for genetic marker data. Bioinformatics, 21(9), 2128–2129. https://doi.org/10.1093/bioinformatics/bti282
Machado, M., Carvalho, P., & van den Berg, C. (2015). Domestication, hybridization, speciation, and the origins of an economically important tree crop of Spondias (Anacardiaceae) from the Brazilian Caatinga dry forest. Neodiversity, 8, 8–49. https://doi.org/10.13102/neod.81.2
Martins, G., Balbino, E., Marques, A., & Almeida, C. (2019). Complete mitochondrial genomes of the Spondias tuberosa Arr. Cam and Spondias mombin L. reveal highly repetitive DNA sequences. Gene, 720, 144026. https://doi.org/10.1016/j.gene.2019.144026
Mattietto, R. A., Lopes, A. S., & Menezes, H. C. (2010). Caracterização física e físico-química dos frutos da cajazeira (Spondias mombin L.) e de suas polpas obtidas por dois tipos de extrator. Brazilian Journal of Food Technology, 13(3), 156–164. https://doi.org/10.4260/BJFT2010130300021
Ministry of the Environment. (2018). Download de dados geográficos. http://mapas.mma.gov.br/i3geo/datadownload.htm
Nei, M. (1973). Analysis of gene diversity in subdivided populations. Proceedings of the National Academy of Sciences, 70(12), 3321–3323.
Nei, M., Tajima, F., & Tateno, Y. (1983). Accuracy of estimated phylogenetic trees from molecular data. Journal of Molecular Evolution, 19(2), 153–170.
Oliveira, M. O., Souza, F. X., & Freitas, B. M. (2012). Abelhas visitantes florais, eficiência polinizadora e requerimentos de polinização na cajazeira (Spondias mombin). Revista Acadêmica: Ciências Agrárias e Ambientais, 10(3), 277–284. https://doi.org/10.7213/academica.7711
Pinto, W. S., Dantas, A. C. V. L., Fonseca, A. A. O., Ledo, C. A. S., Jesus, S. C., Calafange, P. L. P., & Andrade, E. M. (2003). Caracterização física, físico-química e química de frutos de genótipos de cajazeiras. Pesquisa Agropecuária Brasileira, 38(9), 1059–1066. https://doi.org/10.1590/S0100-204X2003000900006
Pritchard, J. K., Stephens, M., & Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics, 155(2), 945–959.
Pritchard, J. K., & Wen, W. (2004). Documentation for structure software: Version 2. University of Chicago.
Raposo, A., Martins, K., Ciampi, A. Y., Wadt, L. H. O., & Veasey, E. A. (2007). Diversidade genética de populações de andiroba no Baixo Acre. Pesquisa Agropecuária Brasileira, 42(9), 1291–1298. http://dx.doi.org/10.1590/S0100-204X2007000900011
Reis, R. V., Oliveira, E. J., Viana, A. P., Pereira, T. N. S., Pereira, M. G., & Silva, M. G. M. (2011). Diversidade genética em seleção recorrente de maracujazeiro-amarelo detectada por marcadores microssatélites. Pesquisa Agropecuária Brasileira, 46(1), 51–57. http://dx.doi.org/10.1590/S0100-204X2011000100007
Rohlf, J. (1970). Adaptive Hierarchical Clustering Schemes. Systematic Zoology, 19(1), 58–82.
Santana, F. F. (2010). Caracterização de genótipos de cajazeira (Doctoral thesis). Universidade Estadual Paulista, Brazil. https://repositorio.unesp.br/handle/11449/105213
Santos, V., & Almeida, C. (2019). The complete chloroplast genome sequences of three Spondias species reveal close relationship among the species. Genetics and Molecular Biology, 42(1), 132–138. http://dx.doi.org/10.1590/1678-4685-GMB-2017-0265
Santos, J. F. L., Rossi, A. A. B., Pena, G. F., Tiago, A. V., Zortéa, K. E. M., Cardoso, E. S., Pedri, E. C. M., Santos, I. C. B., Santos, P. H. A. D., Santos, D. B., & Santos, I. R. B. (2020). Variability of fruits and seeds of Byrsonima crassifolia (Malpighiaceae) genotypes cultivated in northern Mato Grosso State, Brazil. Genetic and Molecular Research, 19(2), gmr18620. http://dx.doi.org/10.4238/gmr18620
Sebbenn, A. M. (2003). Número de populações para conservação genética in situ de espécies arbóreas. Revista do Instituto Florestal, 15(1), 45–51.
Shimizu, J. Y, Jaeger, P., & Sopchaki, S. A. (2000). Variabilidade genética em uma população remanescente de araucária no Parque Nacional do Iguaçu, Brasil. Boletim de Pesquisa Florestal, 41, 18–36.
Silva, J. N., Costa, A. B., Silva, J. V., & Almeida, C. (2015). DNA barcoding and phylogeny in neotropical species of the genus Spondias. Biochemical Systematics and Ecology, 61, 240–243. http://dx.doi.org/10.1016/j.bse.2015.06.005
Silva, E. F., Martins, L. S. S., & Oliveira, V. R. (2009). Diversity and genetic struture in cajá tree (Spondias mombin L.) populations in northeastern Brazil. Revista Brasileira de Fruticultura, 31(1), 171–181. http://dx.doi.org/10.1590/S0100-29452009000100024
Silva, B. M., Rossi, A. A. B., Dardengo, J. F. E., Tiago, P. V., Silveira, G. F., & Souza, S. A. M. (2017a). Genetic divergences between Spondias mombin (Anacardiaceae) genotypes found through morphological traits. Revista de Biología Tropical, 65(4), 1337–1346. http://dx.doi.org/10.15517/rbt.v65i4.25765
Silva, B. M., Rossi, A. A. B., Tiago, A. V., Schmitt, K. F. M., Dardengo, J. F. E., & Souza, S. A. M. (2017b). Genetic diversity of Cajazeira (Spondias mombin L.) in three geographic regions. Genetics and Molecular Research, 16(1), gmr16018946. http://dx.doi.org/10.4238/gmr16018946
Smythe, N. (1970). Relationships between fruiting seasons and seed dispersal methods in a neotropical forest. The American Naturalist, 104(935), 25–35.
Sobierajski, G. R., Kageyama, P. Y., & Sebbenn, A. M. (2006). Sistema de reprodução em nove populações de Mimosa scabrella Bentham (Leguminosaceae). Scientia Forestalis, 71, 37–49.
Souza, F. X., Costa, J. T. A., & Lima, R. N. (2006). Características morfológicas e fenológicas de clones de cajazeira cultivados na Chapara do Apódi, Ceará. Revista Ciência Agronômica, 37(2), 208–215.
Sujii, P. S., Martins, K., Wadt, L. H. O., Azevedo, V. C. R., & Solferini, V. N. (2015). Genetic structure of Bertholletia excelsa populations from the Amazon at different spatial scales. Conservation Genetics, 16(4), 955–964. https://doi.org/10.1007/s10592-015-0714-4
Turner, M. E, Stephens, J. C., & Anderson, W. W. (1982). Homozygosity and patch structure in plant populations as a result of nearest-neighbor pollination. Proceedings of the National Academy of Sciences, 79(1), 203–207. https://doi.org/10.1073/pnas.79.1.203
Weir, B. S., & Cockerham, C. C. (1984). Estimating F-statistics for the analysis of population structure. Evolution, 38(6), 1358–1370. https://doi.org/10.2307/2408641
Wright, S. (1931). Evolution in mendelian populations. Genetics, 16(2), 97–159.
Yeh, F. C., Yang, R. C., & Boyle, T. (1999). POPGENE: Microsoft Windows-based freeware for population genetic analysis (Version 1.32, software). https://sites.ualberta.ca/~fyeh/popgene_download.html
Young, A., Boyle, T., & Brown, T. (1996). The population genetic consequences of habitat fragmentation for plants. Trends in Ecology & Evolution, 11(10), 413–418. https://doi.org/10.1016/0169-5347(96)10045-8
Zane, L., Bargelloni, L., & Patarnello, T. (2002). Strategies for microsatellite isolation: a review. Molecular Ecology, 11(1), 1–16. https://doi.org/10.1046/j.0962-1083.2001.01418.x
##plugins.facebook.comentarios##
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright (c) 2021 Revista de Biología Tropical