Revista de Biología Tropical ISSN Impreso: 0034-7744 ISSN electrónico: 2215-2075

OAI: https://revistas.ucr.ac.cr/index.php/rbt/oai
Problems and puzzles in echinoderm demography
PDF
HTML

Keywords

echinoderm; life-cycle; plankton; connectivity; growth, mortality; reproduction.
equinodermos; ciclo de vida; plancton; conectividad; crecimiento; mortalidad; reproducción.

How to Cite

Ebert, T. A. (2021). Problems and puzzles in echinoderm demography. Revista De Biología Tropical, 69(S1), S1–S13. https://doi.org/10.15517/rbt.v69iSuppl.1.46318

Abstract

Introduction: There are problems and puzzles in understanding reproduction, growth and mortality in echinoderm life cycles. Objective: Explore problems and puzzles in life cycles that are important and challenging. Methods: The literature is used to elucidate problems associated with all life stages. Results: Sources of larvae that settle at a site are explored using oceanographic modelling and genetic methods. There are few studies that have estimated larval mortality in the plankton under field conditions and results differ from experimental results or patterns of settlement. In a small number of studies, mortality rate of newly settled larvae appears to change rapidly as individuals grow. There are problems measuring size, and measurement bias that interferes with many tagging methods used to estimate growth. There also are problems with the use of natural growth lines and commonly used software to estimate both growth and mortality from size-frequency data. An interesting puzzle is that echinoderms may show negative senescence with mortality rate decreasing with size. There is a problem in fertilization success based on density so there should not be rare species where sexes are separate with free spawning of gametes yet there seem to be rare echinoderms. Conclusions: All parts of echinoderm life cycles provide problems and puzzles that are important and challenging.

https://doi.org/10.15517/rbt.v69iSuppl.1.46318
PDF
HTML

References

Austin, W.C., & Hadfield, M.G. (1980). Ophiuroidea: The brittle stars. In R.H. Morris, D.P. Abbott, & E.C. Haderlie (Eds.), Intertidal Invertebrates of California (pp. 146-159). California: Stanford University Press.

Barrera, A.M. (2018). Estimación del crecimiento del erizo de mar Arbacia lixula (Master’s thesis). Universidad de La Laguna, Tenerife, Canary Islands, Spain.

Basch, L.V., & Tegner, M.J. (2007). Reproductive responses of purple sea urchin (Strongylocentrotus purpuratus) populations to environmental conditions across a coastal depth gradient. Bulletin of Marine Science, 81(2), 255-282.

Blanco, M., Ospina-Álvarez, A., Navarrete, S.A., & Fernández, M. (2019). Influence of larval traits on dispersal and connectivity patterns of two exploited marine invertebrates in central Chile. Marine Ecology Progress Series, 612, 43-64.

Brey, T., Pearse, J., Basch, L., McClintock, J., & Slattery, M. (1995). Growth and production of Sterechinus neumayeri (Echinoidea: Echinodermata) in McMurdo Sound, Antarctica. Marine Biology, 124, 279-292.

Cabanac, A., & Himmelman, J.H. (1996). Population structure of the sand dollar Echinarachnius parma in the subtidal zone of the northern Gulf of St. Lawrence, eastern Canada. Canadian Journal of Zoology, 74(4), 698-709.

Casilagan, I.L.N., Juinio-Meñez, M.A., & Crandall, E.D. (2013). Genetic diversity, population structure, and demographic history of exploited sea urchin populations (Tripneustes gratilla) in the Philippines. Journal of Experimental Marine Biology and Ecology, 449, 284-293.

Cho, W., & Shank, T.M. (2010). Incongruent patterns of genetic connectivity among four ophiuroid species with differing coral host specificity on North Atlantic seamounts. Marine Ecology, 31(S1), 121-143.

Cocanour, B.A. (1969). Growth and reproduction of the sand dollar, Echinarachnius parma (Echinodermata: Echinoidea) (Doctoral thesis). University of Maine, Orono, USA.

Cowen, R.K., Gawarkiewicz, G., Pineda, J., Thorrold, S.R., & Werner, F.E. (2007). Population connectivity in marine systems: An overview. Oceanography, 20(3), 14-21.

Dahm, C. (1996). Ökologie und Populationsdynamik antarktischer Ophiuroiden (Echinodermata). Berichte zur Polarforschung, 194, 1-289.

Deutler, F. (1926). Über das Wachstum des Seeigelskeletts. Zoologische Jahrbücher. Abteilung für Anatomie und Ontogenie der Tiere, 48, 119-200.

Ebert, T.A. (1967). Growth and repair of spines in the sea urchin Strongylocentrotus purpuratus (Stimpson). Biological Bulletin, 133, 141-149.

Ebert, T.A. (1982). Longevity, life history, and relative body wall size in sea urchins. Ecological Monographs, 52, 353-394.

Ebert, T.A. (2010). Dynamics of Holothuria atra at Enewetak Atoll, Republic of the Marshall Islands, based on tetracycline tagging. In L.G.Harris, S.A. Böttger, C.W. Walker, & M.P. Lesser (Eds.), Echinoderms: Durham (pp. 609-614). The Netherlands: CRC Press/Balkema.

Ebert, T.A. (2013). Use of diverse growth models to estimate annual survival from mean size in a sample: Examples using sea urchins. Cahiers de Biologie Marine, 54, 605-613.

Ebert, T.A. (2019). Negative senescence in sea urchins. Experimental Gerontology, 122, 92-98.

Ebert, T.A., & Russell, M.P. (1992). Growth and mortality estimates for red sea urchin, Strongylocentrotus franciscanus, from San Nicolas Island, California. Marine Ecology Progress Series, 81, 31-41.

Ebert, T.A., Schroeter, S.C., Dixon, J.D., & P. Kalvass. P. (1994). Settlement patterns of red and purple sea urchins (Strongylocentrotus franciscanus and S. purpuratus) in California, USA. Marine Ecology Progress Series, 111, 41-52.

Ebert, T.A., & Janies, D.A. (2020). Modeling the life cycle of echinoderm larvae clones. Bulletin of Marine Science, 96(1), 221-228.

Edmands, S., Moberg, P.E., & Burton, R.S. (1996). Allozyme and mitochondrial DNA evidence of population subdivision in the purple sea urchin Strongylocentrotus purpuratus. Marine Biology, 126, 443-450.

Emlet, R.B. (1985). Crystal axes in recent and fossil adult Echinoids indicate trophic mode in larval development. Science, 230, 937-940.

Finch, C. (1990). Longevity, Senescence, and the Genome. Illinois: University of Chicago Press.

Flowers, J.M., Schroeter, S.C., & Burton, R.S. (2002). The recruitment sweepstakes has many winners: genetic evidence from the sea urchin Strongylocentrotus purpuratus. Evolution, 56(7), 1445-1453.

Gage, J.D. (1990). Skeletal growth bands in brittle stars: microstructure and significance as age markers. Journal of the Marine Biological Association of the United Kingdom, 70(1), 209-224.

Gordon, I. (1926). The development of the calcareous test of Echinus miliaris. Philosophical Transactions of the Royal Society of London. Series B, 214, 259-312.

Gorzelak, P., Stolarski, J., Dubois, P. Kopp, C., & Meibom, A. (2011). 26Mg labeling of the sea urchin regenerating spine: Insights into echinoderm biomineralization process. Journal of Structural Biology, 176(1), 119-126.

Granja-Fernández, R., Herrero-Pérezrul, M.D., López-Pérez, R.A., Hernández, L., Rodríguez-Zaragoza, F.A., Jones, R.W., & Pineda-López, R. (2014). Ophiuroidea (Echinodermata) from coral reefs in the Mexican Pacific. ZooKeys, 406, 101-145.

Harms, S., & Winant, C.D. (1998). Characteristic patterns of the circulation in the Santa Barbara Channel. Journal of Geophysical Research, 103(C2), 3041-3065.

Heatfield, B.M. (1971). Growth of the calcareous skeleton during regeneration of spines of the Sea Urchin, Strongylocentrotus purpuratus (Stimpson): A light and scanning electron microscopic study. Journal of Morphology, 134(1), 57-89.

Hedgecock, D., Barber, P.H., & Edmands, S. (2007). Genetic approaches to measuring connectivity. Oceanography, 20(3), 70-79.

Hemery, L.G., Eléaume, M., Roussel, V., Améziane, N., Gallut, C., Steinke, D., Cruaud, C., Couloux, A., & Wilson, N.G. (2012). Comprehensive sampling reveals circumpolarity and sympatry in seven mitochondrial lineages of the Southern Ocean crinoid species Promachocrinus kerguelensis (Echinodermata). Molecular Ecology, 21, 2502-2518.

Herrero-Pérezrul, M.D., Reyes-Bonilla, H., García-Domínguez, F., & Cintra-Buenrostro, C.E. (1999). Reproduction and growth of Isostichopus fuscus (Echinodermata: Holothuroidea) in the southern Gulf of California, México. Marine Biology, 135, 521-532.

Janies, D., Hernández-Díaz, Y.Q., Solís-Marín, F.A., Lopez, K., Alexandrov, B., Galac, M., Herrera, J., Cobb, J., Ebert, T.A., & Bosch, I. (2019). Discovery of adults linked to cloning oceanic starfish larvae (Oreaster, Asteroidea: Echinodermata). Biological Bulletin, 236(3), 174-185.

Johnson K.B., & Shanks, A.L. (2003). Low rates of predation on planktonic marine invertebrate larvae. Marine Ecology Progress Series, 248, 125-139.

Keesing, J.K., Halford, A.R., & Hall, K.C. (2018). Mortality rates of small juvenile crown-of-thorns starfish Acanthaster planci on the Great Barrier Reef: implications for population size and larval settlement thresholds for outbreaks. Marine Ecology Progress Series, 597, 179-190.

Keever, C.C., Sunday, J., Puritz, J.B., Addison, J.A., Toonen, R.J., Grosberg, R.K., & Hart, M. W. (2009). Discordant distribution of populations and genetic variation in a sea star with high dispersal potential. Evolution, 63(12), 3214-3227.

Lamare, M.D. & Barker, M.F. (1999). In situ estimates of larval development and mortality in the New Zealand sea urchin Evechinus chloroticus (Echinodermata: Echinoidea). Marine Ecology Progress Series, 180, 197-211.

Levin, L.A. (2006). Recent progress in understanding larval dispersal: new directions and digressions. Integrative and Comparative Biology, 46(3), 282-297.

Marcus, N.H. (1977). Genetic variation within and between geographically separated populations of the sea urchin, Arbacia punctulata. Biological Bulletin, 153(3), 560-576.

Miller, K.M., Supernault, K.J., Li, S., & Withler, R.E. (2006). Population structure in two marine invertebrate species (Panopea abrupta and Strongylocentrotus franciscanus) targeted for aquaculture and enhancement in British Columbia. Journal of Shellfish Research, 25(1), 33-42.

Moore, H.B. (1935). A comparison of the biology of Echinus esculentus in different habitats. Part II. Journal of the Marine Biological Association of the United Kingdom, 20, 109-128.

Muscat, A.M. (1975). Reproduction and growth in the ophiuroid, Ophionereis annulata (Master’s thesis). San Diego State University, San Diego, California, USA.

Nichols, D., Sime, A.A.T., & Bishop, G.M. (1985). Growth in populations of the sea-urchin Echinus esculentus L. (Echinodermata: Echinoidea) from the English Channel and Firth of Clyde. Journal of Experimental Marine Biology and Ecology, 86(3), 219-228.

Olguín-Espinoza, I. (2003). Speciation in marine systems: the case study of the sea urchin Arbacia incisa (Agassiz 1863) (Doctoral thesis) University of California Davis and San Diego State University, California, USA.

Olivares-Bañuelos, N.C, Enríquez-Paredes, L.M., Ladah, L.B., De La Rosa-Vélez, J. (2008) Population structure of purple sea urchin Strongylocentrotus purpuratus along the Baja California peninsula. Fisheries Science, 74, 804-812.

Ouréns, R., Flores, L., Fernández, L., & Freire, J. (2013). Habitat and density-dependent growth of the sea urchin Paracentrotus lividus in Galicia (NW Spain). Journal of Sea Research, 76, 50-60.

Pineda, J., Hare, J.A., & Sponaugle, S. (2007). Larval transport and dispersal in the coastal ocean and consequences for population connectivity. Oceanography, 20(3), 22-39.

Pirog, A., Gélin, P., Bédier, A., Bianchetti, G., Georget, S., Frouin, P., & Magalon, H. (2017). Clonal structure through space and time: High stability in the holothurian Stichopus chloronotus (Echinodermata). Ecology and Evolution, 7(18), 7534-7547.

Powell, D.G. (1979). Estimation of mortality and growth parameters from the length frequency of a catch. Rapports et Procès-verbaux des Réunions, Conseil international pour L’Exploration de la Mer, 175, 167-169.

Quiroga, E., & Sellanes, J. (2009). Growth and size-structure of Stegophiura sp. (Echinodermata: Ophiuroidea) on the continental slope off central Chile: a comparison between cold seep and non-seep sites. Journal of the Marine Biological Association of the United Kingdom, 89(2), 421-428.

Rowley, R.J. (1990). Newly settled sea urchins in a kelp bed and urchin barren ground: a comparison of growth and mortality. Marine Ecology Progress Series, 62, 229-240.

Rumrill, S.S. (1987). Differential predation upon embryos and larvae of temperate Pacific echinoderms (Doctoral thesis). University of Alberta, Edmonton, Alberta, Canada.

Rumrill, S.S. (1990). Natural mortality of marine invertebrate larvae. Ophelia, 32, 163-198.

Schwamborn, R. (2018). How reliable are the Powell-Wetherall plot method and the maximum-length approach? Implications for length-based studies of growth and mortality. Reviews in Fish Biology and Fisheries, 28(3), 587–605.

Shelton, A.O., Woodby, D.A., Hebert, K., & Witman, J.D. (2006). Evaluating age determination and spatial patterns of growth of the red sea urchins in southeast Alaska. Transactions of the American Fisheries Society, 135, 1670-1680.

Soliman, T., Takama, O., Fernandez-Silva, I., & Reimer, J.D. (2016). Extremely low genetic variability within and among locations of the greenfish holothuria Stichopus chloronotus Brandt, 1835 in Okinawa, Japan. PeerJ, 4, e2410.

Sun, J., Hamel, J.F., Gianasi, B.L., & Mercier, A. (2019). Age determination in echinoderms: first evidence of annual growth rings in holothuroids. Proceedings of the Royal Society B, 286, 20190858.

Thorrold, S.R., Jones, G.P., Hallberg, M.E., Burton, R.S., Swearer, S.E., Neigel, J.E., Morgan, S.G., & Warner, R.R. (2002). Quantifying larval retention and connectivity in marine populations with artificial and natural markers. Bulletin of Marine Science, 70(1), 291-308.

Thorson, G. (1961). Length of pelagic larval life in marine bottom invertebrates as related to larval transport by ocean currents. Oceanography AAAS Publication, 67, 455-474.

Uthicke, S., & Benzie, J.A.H. (2003). Gene flow and population history in high dispersal marine invertebrates: mitochondrial DNA analysis of Holothuria nobilis (Echinodermata: Holothuroidea) populations from the Indo-Pacific. Molecular Ecology, 12(10), 2635-2648.

Uthicke, S., Benzie, J.A.H., & Ballment, E. (1999). Population genetics of the fissiparous holothurian Stichopus chloronotus (Aspidochirotida) on the Great Barrier Reef, Australia. Coral Reefs, 18, 123-132.

Van Sickle, J. (1977). Mortality rates from size distributions. The application of a conservation law. Oecologia, 27, 311-318.

Vaupel, J.W., Baudisch, A., Dölling, M., Roach, D.A., & Gampe, J. (2004). The case for negative senescence. Theoretical Population Biology, 65(4), 339-351.

Vermeij, G.J., & Grosberg, R.K. (2018). Rarity and persistence. Ecology Letters, 21, 3-8.

Watts, R.J., Johnson, M.S., & Black, R. (1990). Effects of recruitment on genetic patchiness in the urchin Echinometra mathaei in Western Australia. Marine Biology, 105, 145-151.

Wetherall, J.A. (1986). A new method for estimating growth and mortality parameters from length-frequency data. Fishbyte, 4(1), 12-14.

White, J.W., Standish, J.D., Thorrold, S.R., & Warner, R.R. (2008). Markov chain Monte Carlo methods for assigning larvae to natal sites using natural geochemical tags. Ecological Applications, 18(8), 1901-1913.

Wing, S.R., Gibbs, M.T., & Lamare, M. D. (2003). Reproductive sources and sinks within a sea urchin, Evechinus chloroticus, population of a New Zealand fjord. Marine Ecology Progress Series, 248, 109-123.

Yasuda, N., Taquet, C., Nagai, S., Fortes, M., Suharsono, Adi Susanto, H., Phongsuwan, N., & Nadaoka, K. (2012). Genetic structure of Culcita sp. pincushion seastar in the Coral Triangle. Cairns, Australia: Proceedings of the 12th International Coral Reef Symposium, 9-13 July 2012.

Comments

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Downloads

Download data is not yet available.