Revista de Biología Tropical ISSN Impreso: 0034-7744 ISSN electrónico: 2215-2075

OAI: https://revistas.ucr.ac.cr/index.php/rbt/oai
Locomotion and righting behavior of sea stars: a study case on the bat star Asterina stellifera (Asterinidae)
PDF
HTML

Keywords

crawling; orientation; bilaterality; Asteroidea; rheotaxis; gravitaxis.
locomoción; orientación; bilateralidad; Asteroidea; reotaxis; gravitaxis

How to Cite

Meretta, P.-E., & Rezende-Ventura, C.-R. (2021). Locomotion and righting behavior of sea stars: a study case on the bat star Asterina stellifera (Asterinidae). Revista De Biología Tropical, 69(S1), S501–S513. https://doi.org/10.15517/rbt.v69iSuppl.1.46392

Abstract

Introduction: The locomotion behavior of an organism involves the integration of aspects like body symmetry, sensory and locomotor systems. Furthermore, various ecological factors seem to be related to locomotion characteristics, such as foraging strategy, migration trends, response to predators and competitors, and environmental stress. Objective: To analyze locomotion and the influence of body symmetry in the crawling and righting movements of the sea star Asterina stellifera. Methods: We carried out laboratory experiments in aquariums in the presence/absence of water current and on a horizontal and vertical surface. Results: The speed is similar to speed in other species of similar size. Both the speed and linearity of displacement were independent of individual body size. A water current leads to faster crawling and straight paths, but there is no rheotaxis: streams do not affect locomotion. Speed and linearity of displacement were independent of individual body size. The displacement pattern described here may be an adaptation of organisms that present dense populations in communities with high prey abundance, as is the case of A. stellifera. Conclusions: Like other asteroids, this species did not show an Anterior/Posterior plane of symmetry during locomotion, or righting movement: it does not tend to bilaterality.

https://doi.org/10.15517/rbt.v69iSuppl.1.46392
PDF
HTML

References

Agostinelli, C., & Lund, U. (2017). R package “circular”: Circular Statistics (version 0.4-93). Retrieved from https://r-forge.r-project.org/projects/circular/

Ardor-Bellucci, L.M., & Smith, N.F. (2019). Crawling and righting behavior of the subtropical sea star Echinaster (Othilia) graminicola: effects of elevated temperature. Marine Biology, 166, 138.

Barahona, M., & Navarrete, S.A. (2010). Movement patterns of the seastar Heliaster helianthus in central Chile: relationship with environmental conditions and prey availability. Marine Biology, 157, 647-661.

Castilla, J.C. (1972). Avoidance behavior of Asterius rubens to extracts of Mytilus edulis, solutions of bacteriological peptone, and selected amino acids. Marine Biology, 15, 236-245.

Cole, L.J. (1913). Direction of locomotion of the starfish (Asterias forbesi). Journal of Experimental Zoology, 14,1-32.

Dale, J. (1997). Chemosensory search behavior in the starfish Asterias forbesi. The Biological Bulletin, 193(2), 210.

Dale, J. (1999). Coordination of chemosensory orientation in the starfish Asterias forbesi. Marine and Freshwater Behaviour and Physiology, 32, 57-71.

Domenici, P., González-Calderón, D., & Ferrari, R.S. (2003). Locomotor performance in the sea urchin Paracentrotus lividus. Journal of the Marine Biological Association of the United Kingdom, 83(2), 285-292.

Drolet, D., & Himmelman, J.H. (2004). Role of current and prey odour in the displacement behaviour of the sea star Asterias vulgaris. Canadian Journal of Zoology, 82(10), 1547-1553.

Dusenbery, D.B. (1992). Sensory Ecology: How organisms acquire and respond to information. New York: W.H. Freeman.

Farias, N.E., Meretta, P.E., & Cledón, M. (2012). Population structure and feeding ecology of the bat star Asterina stellifera (Möbius, 1859): Omnivory on subtidal rocky bottoms of temperate seas. Journal of Sea Research, 70, 14-22.

Feder, H.M., & Christensen, A.M. (1966). Aspects of asteroid biology. In R. Boolotian (Ed.), Physiology of Echinodermata (pp. 87-127). New York: Wiley.

Ferlin, V. (1973). The mode of dislocation of Astropecten aranciacus. Helgoland Marine Research, 24, 151-156.

Gaymer, C.F., & Himmelman, J.H. (2008). A keystone predatory sea star in the intertidal zone is controlled by a higher-order predatory sea star in the subtidal zone. Marine Ecology Progress Series, 370, 143-153.

Genzano, G., Giberto, D., & Bremec, C. (2011). Benthic survey of natural and artificial reefs off Mar del Plata, Argentina, southwestern Atlantic. Latin American Journal of Aquatic Research, 39(3), 553-566.

Grabowsky, G.L. (1994). Symmetry, locomotion, and the evolution of an anterior end: a lesson from sea urchins. Evolution, 48(4), 1130-1146.

Hurd, P. (2001). Log-likelihood tests of independence and goodness of fit. Retrieved from http://www.pmc.ucsc.edu/~mclapham/Rtips/G%20test.txt

Ji, C., Wu, L., Zhao, W., Wang, S., & Lv, J. (2012). Echinoderms have bilateral tendencies. PLoS ONE, 7, 1-6.

Kjerschow-Agersborg, H.P. (1922). The relation of the madreporite to the physiological anterior end in the twenty-rayed starfish, Pycnopodia helianthoides (Stimpson). Biological Bulletin, 42(4), 202-216.

McClintock, J.B., & Lawrence, J.M. (1981). An optimization study on the feeding behavior of Luidia clathrata say (Echinodermata: Asteroidea). Marine Behaviour & Physiology, 7, 263-275.

McClintock, J.B., & Lawrence, J.M. (1984). Ingestive conditioning in Luidia clathrata (Say) (Echinodermata: Asteroidea): Effect of nutritional condition on selectivity, teloreception, and rates of ingestion. Marine Behavior and Physiology, 10, 167-181.

Meretta, P.E., Farias, N.E., Cledón, M., & Ventura, C.R. (2016). Growth pattern and changes in abundance of the endangered bat star Asterina stellifera. Marine Ecology, 37, 1423-1433.

Meretta, P.E., Rubilar, T., Cledón, M., & Ventura, C.R.R. (2014). Geographical implications of seasonal reproduction in the bat star Asterina stellifera. Journal of Sea Research, 85, 222-232.

Montgomery, E.M., & Palmer, A.R. (2012). Effects of body size and shape on locomotion in the bat star (Patiria miniata). Biological Bulletin, 222, 222-232.

Montgomery, E.M. (2014). Predicting crawling speed relative to mass in sea stars. Journal of Experimental Marine Biology and Ecology, 458, 27-33.

Moore, P.A., & Lepper, D.M.E. (1997). Role of chemical signals in the orientation behavior of the sea star Asterias forbesi. Biological Bulletin, 192(3), 410-417.

Mueller, B., Bos, A.R., Graf, G., & Gumanao, G.S. (2011). Size-specific locomotion rate and movement pattern of four common Indo-Pacific sea stars (Echinodermata; Asteroidea). Aquatic Biology, 12, 157-164.

O’Donoghue, C.H. (1926). On the summer migration of certain starfish in Departure Bay. Journal of the Fisheries Research Board of Canada, 1(3), 455-472.

Ohshima, H. (1940). The righting movement of the sea-star, Oreaster nodosus (L.). Japanese Journal of Zoology, 8, 575-589.

Parker, G.H. (1936). Direction and means of locomotion in the regular sea-urchin Lytechinus. Mémoires du Musée Royal d’histoire Naturelle de Belgique Series, 3, 197-208.

Polls, I., & Gonor, J. (1975). Behavioral aspects of righting in two asteroids from the Pacific coast of North America. Biological Bulletin, 148(1), 68-84.

Preyer, W.T. (1887). Die Bewegungen der Seesterne. Mittheilungen aus der Zoologischen Station zu Neapel, 7, 191-233.

Pyke, G.H., Pulliam, H.R., & Charnov, E.L. (1977). Optimal foraging: a selective review of theory and tests. The Quarterly Review of Biology, 52(2), 137-154.

R Core Team. (2019). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Retrieved from http://www.R-project.org/

Reese, E.S. (1966). The complex behaviour of echinoderms. In R.A. Boolootian (Ed.), Physiology of Echinodermata (pp. 157-218). New York: Interscience Publishers.

Ricci, N., Barbanera, F., & Erra, F. (1998). A quantitative approach to movement, displacement, and mobility of protozoa. Journal of Eukaryotic Microbiology, 45, 606-611.

Rochette, R., Hamel, J.F., & Himmelman, J.H. (1994). Foraging strategy of the asteroid Leptasterias polaris: role of prey odors, current and feeding status. Marine Ecology Progress Series, 106, 93-100.

Russell, L. (2019). emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.4. Retrieved from https://CRAN.R-project.org/package=emmeans

Scheibling, R.E. (1981). Optimal foraging movements of Oreaster reticulatus (L.) (Echinodermata: Asteroidea). Journal of Experimental Marine Biology and Ecology, 51(2-3), 173-185.

Sloan, N.A. (1979). Starfish encounters: An experimental study of its advantages. Experientia, 35, 1314-1315.

Sloan, N.A. (1980). The arm curling and terminal tube foot responses of the asteroid Crossaster papposus (L.). Journal of Natural History, 14, 469-482.

Sloan, N.A., & Campbell, A.C. (1982). Perception of food. In M. Jangoux & J.M. Lawrence (Eds.), Echinoderm nutrition (pp. 3-23). Rotterdam: A.A. Balkema.

Sloan, N.A., & Northway, S.M. (1982). Chemoreception by the asteroid Crossaster papposus (L.). Journal of Experimental Marine Biology and Ecology, 61, 85-98.

Swenson, D.P., & McClintock, J.B. (1998). A quantitative assessment of chemically-mediated rheotaxis in the asteroid Coscinasterias tenuispina. Marine & Freshwater Behaviour & Physiology, 31(2), 63-80.

Thompson, M., Drolet, D., & Himmelman, J.H. (2005). Localization of infaunal prey by the sea star Leptasterias polaris. Marine Biology, 146, 887-894.

Valentincic, T. (1983). Innate and learned responses to external stimuli in asteroids. Echinoderm Studies, 1, 111-138.

Valentincic, T. (1985). Behavioral study of chemoreception in the sea star Marthasterias glacialis: Structure–activity relationships of lactic acid, amino acids, and acethylcholine. Journal of Comparative Physiology A, 157, 537-545.

Wyeth, R.C., Woodward, O.M., & Dennis-Willows, A.O. (2006). Orientation and navigation relative to water flow, prey, conspecifics, and predators by the nudibranch mollusc Tritonia diomedea. Biological Bulletin, 210(2), 97-108.

Yoshimura, K., & Motokawa, T. (2008). Bilateral symmetry and locomotion: do elliptical regular sea urchins proceed along their longer body axis?. Marine Biology, 154, 911-918.

Yoshimura, K., & Motokawa, T. (2010). Bilaterality in the regular sea urchin Anthocidaris crassispina is related to efficient defense not to efficient locomotion. Marine Biology, 157, 2475-2488.

Yoshimura, K., Iketani, T., & Motokawa, T. (2012). Do regular sea urchins show preference in which part of the body they orient forward in their walk?. Marine Biology, 159, 959-965.

Zar, J.H. (1999). Biostatistical analysis. New Jersey: Prentince Hall.

Zuur, A., Ieno, E.N., Walter, N.J., Saveliev, A.A., & Smith, A.A. (2009). Mixed Effects Models and Extensions in Ecology with R. New York: Springer.

Comments

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Downloads

Download data is not yet available.