Revista de Biología Tropical ISSN Impreso: 0034-7744 ISSN electrónico: 2215-2075

OAI: https://revistas.ucr.ac.cr/index.php/rbt/oai
Microsporogenesis and micromorphology of pollen grains of the plant Alcea rosea (Malvaceae)
PDF (Español (España))
HTML (Español (España))

Keywords

Malvaceae
microspore
palynology
pantoporate
sporodermis
tapetum
ultrastructure
Malvaceae
microspora
palinología
pantoporado
esporodermis tapete
ultraestructura

How to Cite

Rincón-Barón, E. J., Torres-Rodríguez, G. A., Passarelli, L. M., Zarate, D. A., Cuarán, V. L., & Plata-Arboleda, S. (2021). Microsporogenesis and micromorphology of pollen grains of the plant Alcea rosea (Malvaceae). Revista De Biología Tropical, 69(3), 852–864. https://doi.org/10.15517/rbt.v69i3.46936

Abstract

Introduction: Studies on microsporogenesis, micromorphology and structure of pollen grains in Malvaceae are scarce. Objectives: To describe the process of microsporogenesis and micromorphological aspects of pollen grains in A. rosea. Methods: Androphores were processed according to standard protocols for sectioning in paraffin. The obtained sections were stained with Safranin-Alcian blue, Aniline blue was used for immature and unfixed anthers and for resin sections of the androphores, Toluidine blue. Ultrathin sections were observed with transmission electron microscopy. For observation with scanning electron microscopy the material was fixed and dehydrated in 2.2 dimethoxypropane, dried to a critical point and coated with gold. Results: Anthers differentiate from a cell mass at the distal ends of the stamen filaments. The wall of the mature anther presents an outer layer of epidermal cells and an inner layer, the endothecium. Microspore mother cells divide by mitosis and then undergo meiosis to form tetrads. The tapetum is initially cellular and forms a single layer of cells and then loses cellular integrity by invading the microsporangium locule, forming a periplasmodia, by the time the pollen grains are released it degenerated. During sporodermis formation, exine is first deposited and then intine. Pollen grains are pantoporate, apolar, with radial symmetry, spheroidal, with spines, bacula, granules and microgranules. Tectum is perforated with foveolea arranged homogeneously over the whole surface and pollenkit is present. Exine is broad and consists of a thick 3.5 to 4 µm endexine and a thin ektexine (0.6-0.7 µm). The ultrastructure shows columellae forming the infratectum. Capitate glandular unicellular nectariferous trichomes covers the whole surface of the stamen filaments. Conclusions: The structure and development of the anthers follows the known patterns for angiosperms. Simultaneous microsporogenesis and centripetal deposit of the sporodermis have been previously described for Malvaceae.

https://doi.org/10.15517/rbt.v69i3.46936
PDF (Español (España))
HTML (Español (España))

References

Arabameri, M., Khodayari, H., & Zarre, S. (2020). Trichome micromorphology in Alcea L. and allied genera (Malvaceae) and its systematic implication. Nordic Journal of Botany, 38(6), 1–16.

Barnes, H., & Blackmore, S. (1986). Some functional features in pollen development. En S. Blackmore, & I. K. Ferguson (Eds.), Pollen and spores: form and function (pp. 71–80). Academic Press.

Bayer, C., & Kubitzki, K. (2003). Malvaceae. En K. Kubitzki (Ed.), The families and genera of vascular plants (pp. 225–231). Springer-Verlag.

Bibi, N., Akhtar, N., Hussain, M., & Khan, A. M. (2010). Systematic implications of pollen morphology in the family Malvaceae from North West frontier province, Pakistan. Pakistan Journal of Botany, 42(4), 2205–2214.

Blackmore, S., & Barnes, S. H. (1985). Cosmos pollen ontogeny: a scanning electron microscope study. Protoplasma, 126(1-2), 91–99.

Blackmore, S., & Barnes, S. H. (1987). Pollen wall morphogenesis in Tragopogon porrifolius L. (Compositae: Lactuceae) and its taxonomic significance. Review of Palaeobotany and Palynology, 52(2–3), 233–246.

Blackmore, S., Wortley, A. H., Skvarla, J. J., & Rowley, J. R. (2007). Pollen wall development in flowering plants. New Phytologist, 174(3), 483–498.

Cabi, E., Başer, B., Uzunhisarcikli, M. E., & Yavru, A. (2009). Pollen morphology of Alcea L. and Althaea L. genera (Malvaceae) in Turkey. Feddes Repertorium, 120(7-8), 405–418.

Christensen, P. B. (1986). Pollen morphological studies in the Malvaceae. Grana, 25(2), 95–117.

Ciciarelli, M. D. L. M., Passarelli, L. M., & Rolleri, C. H. (2010). Morfología del polen en especies de Canna (Cannaceae) y su implicancia sistemática. Revista de Biología Tropical, 58(1), 63–79.

Crang, R., Lyons-Sobaski, S., & Wise, R. (2018). Plant Anatomy: A Concept-Based Approach to the Structure of Seed Plants. Springer.

Cronquist, A. (1988). The evolution and classification of flowering plants (2nd Ed.). New York Botanical Garden.

Cuadrado, G. (2003). Estudio Morfológico del Polen de Bordasia bicornis (Malvaceae). Bonplandia, 12(1–4), 137–140.

Culhane, K., & Blackmore, S. (1988). Northwest European Pollen Flora, 41 Malvaceae. Review of Palaeobotany and Palynology, 57(1-2), 45–74.

Demarco, D. (2017). Histochemical analysis of plant secretory structures. In C. Pellicciari, & M. Biggiogera (Eds.), Histochemistry of single molecules methods and protocols (pp. 313–330). Humana Press.

El Naggar, S. M., & Sawady, N. (2008). Pollen morphology of Malvaceae and its taxonomic significance in Yemen. Flora Mediterranea, 18, 431–439.

Erdtman, G. (1986). Pollen morphology and plant taxonomy. Angiosperms. Brill Verlag.

Escobar-García, P., Pakravan, M., Schönswetter, P., Aguilar, J. F., & Schneeweiss, G. M. (2012). Phylogenetic relationships in the species-rich Irano-Turanian genus Alcea (Malvaceae). Taxon, 61(2), 324–332.

Espolador-Leitão, C. A., Strozi, R. M., Azevedo, A., de Araújo, J. M., Silva, K. L. F. & García, C. R. (2005). Anatomy of the floral, bract, and foliar nectaries of Triumfetta semitriloba (Tiliaceae). Canadian Journal of Botany, 83(3), 279–286.

Fernández, G. J., Talle, B., & Wilson, Z. A. (2015). Anther and pollen development: a conserved developmental pathway. Journal of Integrative Plant Biology, 57(11), 876–891.

Furness, C. A., & Rudall, P. J. (2004). Pollen aperture evolution–a crucial factor for eudicot success? Trends in Plant Science, 9(3), 154–158.

Furness, C. A., Rudall, P. J., & Sampson, F. B. (2002). Evolution of microsporogenesis in angiosperms. International Journal of Plant Sciences, 163(2), 235–260.

Galati, B. G., Gotelli, M. M., Rosenfeldt, S., Torretta, J. P., & Zarlavsky, G. (2011). Orbicules in relation to the pollination modes. In B. J. Kaiser (Ed.), Pollen: structure, types and effects (pp. 1–15). Nova Science Publisher.

Galati, B. G., Monacci, F., Gotelli, M. M., & Rosenfeldt, S. (2007). Pollen, tapetum and orbicule development in Modiolastrum malvifolium (Malvaceae). Annals of Botany, 99(4), 755–763.

Galati, B. G., & Rosenfeldt, S. (1998). The pollen development in Ceiba insignis (Kunth) Gibbs and Semir ex Chorisia speciosa St Hil. (Bombacaceae). Phytomorphology, 48(2), 121–129.

Goldberg, L. (2009). Patterns of nectar production and composition, and morphology of floral nectaries in Helicteres guazumifolia and Helicteres baruensis (Sterculiaceae): two sympatric species from the Costa Rican tropical dry forest. Revista de Biología Tropical, 57(Suppl. 1), 161–177.

Halbritter, H., Ulrich, S., Grimsson, F., Weber, M., Zetter, R., Hesse, M., Buchner, R., Svojtka, M., & Frosch-Radivo, A. (2018). Illustrated pollen terminology (2nd Ed.). Springer.

Hamdy, R., & Shamso, E. (2010). Pollen morphology of Sterculiaceae (s. str.) in Egypt and its taxonomic significance. Egyptian Journal of Botany, 50, 103–117.

Johri, A., & Raghuvanshi, R. K. (2014). Floral biology, pollination and breeding system in Alcea rosea (L.) syn. Althaea chinensis Wall. (Malvaceae). The International Journal of Plant Reproductive Biology, 6(2), 139–144.

Judd, W. S., & Manchester, S. R. (1997). Circumscription of Malvaceae (Malvales) as determined by a preliminary cladistic analysis of morphological, anatomical, palynological, and chemical characters. Brittonia, 49(3), 384–405.

Konzmann, S., Koethe, S., & Lunau, K. (2019). Pollen grain morphology is not exclusively responsible for pollen collectability in bumble bees. Scientific Reports, 9(1), 1–8.

Lattar, E. C., Galati, B. G., Carrera, C. S., & Ferrucci, M. S. (2018). Floral nectaries of Heliocarpus popayanensis and Luehea divaricata (Malvaceae-Grewioideae): structure and ultrastructure. Australian Journal of Botany, 66(1), 59–73.

Lattar, E. C., Galati, B. G., & Ferrucci, M. S. (2012). Ultrastructural study of pollen and anther development in Luehea divaricata (Malvaceae, Grewioideae) and its systematic implications: Role of tapetal transfer cells, orbicules and male germ unit. Flora-Morphology, Distribution, Functional Ecology of Plants, 207(12), 888–894.

Lattar, E. C., Galati, B. G., & Ferrucci, M. S. (2014). Comparative study of anther development, microsporogenesis and microgametogenesis in species of Corchorus, Heliocarpus, Luehea and Triumfetta (Malvaceae: Grewioideae) from South America. New Zealand Journal of Botany, 52(4), 429–445.

Lattar, E. C., Solís, S. M., Avanza, M. M., & Ferrucci, M. S. (2009). Estudios morfo-anatómicos en nectarios florales y extraflorales de Triumfetta rhomboidea (Malvaceae, Grewioideae). Boletín de la Sociedad Argentina de Botánica, 44(1-2), 33–41.

Li, Q., Ruan, C. J., Teixeira da Silva, J. A., & Wang, X. Y. (2012). Floral morphology and mating system of Alcea rosea (Malvaceae). Plant Ecology and Evolution, 145(2), 176–184.

Lopes, A. V., Vogel, S., & Machado, I. C. (2002). Secretory trichomes, a substitutive floral nectar source in Lundia A. DC. (Bignoniaceae), a genus lacking a functional disc. Annals of Botany, 90(2), 169–174.

Lunau, K., Piorek, V., Krohn, O., & Pacini, E. (2014). Just spines-mechanical defense of malvaceous pollen against collection by corbiculate bees. Apidologie, 46(2), 144–149.

Muneratto, J. C., De Souza, L. A., & De Almeida, O. J. G. (2014). The floral structure of three weedy species of Sida (Malvaceae). Journal of the Botanical Research Institute of Texas, 8(1), 127–137.

Nadot, S., Furness, C. A., Sannier, J., Penet, L., Triki‐Teurtroy, S., Albert, B., & Ressayre, A. (2008). Phylogenetic comparative analysis of microsporogenesis in angiosperms with a focus on monocots. American Journal of Botany, 95(11), 1426–1436.

Naskar, S., & Mandal, R. (2014). Characterization of some common members of the family Malvaceae ss on the basis of morphology of selective attributes: epicalyx, staminal tube, sigmatic head and trichome. Indian Journal of Plant Sciences, 4(3), 79–86.

Pacini, E. (2010). Relationships between tapetum, loculus, and pollen during development. International Journal of Plant Sciences, 171(1), 1–11.

Pacini, E., & Hesse, M. (2012). Uncommon pollen walls: reasons and consequences. Verhandlungen der Zoologisch-Botanischen Gesellschaft in Osterreich, 148, 291–306.

Perveen, A., & Qaiser, M. (2009). Pollen flora of Pakistan-Malvaceae: Dombeyoideae-Lxii. Pakistan Journal of Botany, 41(2), 491–494.

Prieu, C., Toghranegar, Z., Gouyon, P. H., & Albert, B. (2019). Microsporogenesis in angiosperms producing pantoporate pollen. Botany Letters, 166(4), 457–466.

Punt, W., Hoen, P. P., Blackmore, S., Nilsson, S., & Le Thomas, A. (2007). Glossary of pollen and spore terminology. Review of Palaeobotany and Palynology, 143(1-2), 1–83.

Rincón, B. E. J., Grisales, E. C., Cuaran, V. L., & Cardona, N. L. (2020). Alteraciones anatómicas e histoquímicas ocasionadas por la oidiosis en hojas de Hydrangea macrophylla (Hydrangeaceae). Revista de Biología Tropical, 68(3), 959–976.

Rincón, B. E. J., Guerra, S. B. E., Restrepo, Z. D. E., & Espinosa, M. S. (2019). Ontogenia e histoquímica de los esporangios y escamas receptaculares del helecho epífito Pleopeltis macrocarpa (Polypodiaceae). Revista de Biología Tropical, 67(6), 1292–1312.

Rincón, B. E. J., Zarate, D. A., Agudelo, G. A., Cuarán, V. L., & Passarelli, L. M. (2021). Micromorfología y ultraestructura de las anteras y los granos de polen en diez genotipos élite de Theobroma cacao (Malvaceae). Revista de Biología Tropical, 69(2), 403–421.

Ruzin, S. E. (1999). Plant microtechnique and microscopy. Oxford University.

Saba, M. D., & dos Santos, F. D. A. R. (2015). Pollen morphology and exine ultrastructure of selected species of Waltheria L. (Byttnerioideae-Malvaceae). Review of Palaeobotany and Palynology, 221, 204–210.

Sannier, J., Baker, W. J., Anstett, M. C., & Nadot, S. (2009). A comparative analysis of pollinator type and pollen ornamentation in the Araceae and the Arecaceae, two unrelated families of the monocots. BMC Research Notes, 2(1), 1–11.

Sawidis, T. H., Eleftheriou, E. P., & Tsekos, I. (1987). The floral nectaries of Hibiscus rosa-sinensis: 1. development of the secretory hairs. Annals of Botany, 59(6), 643–652.

Schneider, J. V., Klie, D., Kacza, J., & Huertas, M. L. (2009). Infrageneric variability of pollen morphology in Palaua (Malveae, Malvaceae) and the taxonomic utility of quantitative pollen characters. Grana, 48(4), 258–269.

Scott, R. J., Spielman, M., & Dickinson, H. G. (2004). Stamen structure and function. The Plant Cell, 16(S1), S46–S60.

Shaheen, N., Khan, M. A., Yasmin, G., Hayat, M. Q., Munsif, S., & Ahmad, K. (2010). Foliar epidermal anatomy and pollen morphology of the genera Alcea and Althaea (Malvaceae) from Pakistan. International Journal of Agriculture and Biology, 12(3), 329–334.

Śnieżko, R. (2000). Fluorescence microscopy of aniline blue stained pistils. In W. V. Dashek (Ed.), Methods in plant electron microscopy and cytochemistry (pp. 81–86). Humana Press.

Stpiczyńska, M., Płachno, B. J., & Davies, K. L. (2018). Nectar and oleiferous trichomes as floral attractants in Bulbophyllum saltatorium Lindl. (Orchidaceae). Protoplasma, 255(2), 565–574.

Strittmatter, L. I., Galati, B. G., & Monacci, F. (2000). Ubisch bodies in the peritapetal membrane of Abutilon pictum Gill (Malvaceae). Beiträge zur Biologie der Pflanzen, 71, 1–10.

Takahashi, M., & Kouchi, J. (1988). Ontogenetic development of spinous exine in Hibiscus syriacus (Malvaceae). American Journal of Botany, 75(10), 1549–1558.

Tanaka, N., Uehara, K., & Murata, J. (2004). Correlation between pollen morphology and pollination mechanisms in the Hydrocharitaceae. Journal of Plant Research, 117(4), 265–276.

Tang, Y. A., Gao, H. U. I., Wang, C. M., & Chen, J. Z. (2006). Microsporogenesis and microgametogenesis of Excentrodendron hsienmu (Malvaceae sl) and their systematic implications. Botanical Journal of the Linnean Society, 150(4), 447–457.

Tang, Y. A., Gao, H., & Xie, J. Z. (2009). An embryological study of Eriolaena candollei Wallich (Malvaceae) and its systematic implications. Flora, 204(8), 569–580.

Tölke, E. D., Bachelier, J. B., Lima, E. A., Galetto, L., Demarco, D., & Carmello-Guerreiro, S. M. (2018). Diversity of floral nectary secretions and structure, and implications for their evolution in Anacardiaceae. Botanical Journal of the Linnean Society, 187(2), 209–231.

Tölke, E. D., Capelli, N. V., Pastori, T., Alencar, A. C., Cole, T. C. H., & Demarco, D. (2019). Diversity of floral glands and their secretions in pollinator attraction. In J. M. Mérillon, & K. G. Ramawat (Eds.), Co-Evolution of Secondary Metabolites (pp.1–46). Reference series in phytochemistry. Springer.

Uzunhisarcikli, M. E., & Vural, M. (2012). The taxonomic revision of Alcea and Althaea (Malvaceae) in Turkey. Turkish Journal of Botany, 36(6), 603–636.

Vogel, S. (1997). Remarkable nectaries: structure, ecology, organophyletic perspectives I. Substitutive nectaries. Flora, 192(4), 305–333.

Vogel, S. (2000). The floral nectaries of Malvaceae sensu lato–a conspectus. Kurtziana, 28(2), 155–171.

Von Balthazar, M., Schönenberger, J., Alverson, W. S., Janka, H., Bayer, C., & Baum, D. A. (2006). Structure and evolution of the androecium in the Malvatheca clade (Malvaceae sl) and implications for Malvaceae and Malvales. Plant Systematics and Evolution, 260(2), 171–197.

Wang, R., & Dobritsa, A. A. (2018). Exine and aperture patterns on the pollen surface: Their formation and roles in plant reproduction. Annual Plant Reviews, 1, 1–40.

Whitlock, B. A. (2002). Malvales. Encyclopedia of Life Science. John Wiley & Sons Eds.

##plugins.facebook.comentarios##

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2021 Revista de Biología Tropical

Downloads

Download data is not yet available.