Abstract
Introduction: The North Pacific of Costa Rica is characterized by presenting a variation of the subsurface temperature of the sea (SSST) modulated by surface winds with east component, with seasonal and intra-seasonal variations. The SSST is fundamental for the interactions of the ocean-atmosphere interface and influence marine biological processes. Zooplankton studies in the North Pacific are scarce and have been focused on the composition, abundance and biomass of macro and mesozooplankton in Culebra Bay. No works on zooplankton has been carried out northward of Papagayo Gulf.
Objective: To analyze the variation of the zooplankton in Bahía Salinas at different scales in response to oceanographic-atmospheric conditions.
Methods: during 2011, 2012 and 2013, mesozooplankton was collected in seven stations following a coastal-ocean gradient to determine abundance, biomass, and community composition. CTD casts were also carried out in each station. Hourly data of the Sea Subsurface Temperature (SSST) were obtained from June 2003 to December 2017.
Results: The annual surface temperature in Bahía Salinas was lower in December-April with a secondary minimum in July and higher in May-June and August-November. The cold, neutral and warm events determined by anomalies in the SSST, presented a distribution of the temperature in the water column with horizontal stratification, vertical mixture and homogeneous, respectively. The spatial distribution of zooplankton did not show significant differences and the variation of the total average abundance and biomass showed a similar behavior during the study period, with less variation in the first year compared to the second one, being the copepods the predominant category for all the dates. On a seasonal scale, a general pattern of variation between dry and rainy seasons was not observed, and copepods and others zooplankton groups were the categories that presented differences. On an intra-seasonal scale, abundance and biomass showed an inverse relationship with SST. Copepods and gelatinous zooplankton (GZ) were differentiated in all events.
Conclusions: The zooplankton of Bahía Salinas respond differentially at different scales to the climatic conditions that affect the SSST of the region. The classification of the sampling dates into events allows characterizing different profiles in the water column it also allows to define the variation patterns for mesozooplankton that reflects short-term adaptation as a function of variation in environmental conditions. These findings help to understand how oceanographic processes determine plankton community composition and biota in general. This is relevant in times of climate change and the manifestation of its impact through processes such as ocean acidification and loss of marine biodiversity.
References
Alfaro, E. (2002). Some Characteristics of the Annual Precipitation Cycle in Central America and their Relationships with its Surrounding Tropical Oceans. Tópicos Meteorológicos y Oceanográficos, 9(2), 88-103.
Alfaro, E. (2014). Caracterización del “veranillo” en dos cuencas de la vertiente del Pacífico de Costa Rica, América Central. Revista de Biología Tropical, 62(Suplemento 4), 1-15.
Alfaro, E., & Cortés, J. (2012). Atmospheric forcing of cool subsurface water events in Bahía Culebra, Gulf of Papagayo, Costa Rica. Revista de Biología Tropical, 60 (Supplement 2), 173-186
Alfaro, E. J., & Cortés, J. (2021). Forcing of cool and warm subsurface water events in Bahía Salinas, Costa Rica. Revista de Biologia Tropical, 69(Suppl. 2), S127-S141.
Alfaro, E., Cortés, J., Alvarado, J. J., Jiménez, C., León, A., Sánchez-Noguera, C., Nivia-Ruiz, J., & Ruiz, E. (2012). Clima y temperatura sub-superficial del mar en Bahía Culebra, Golfo de Papagayo, Costa Rica. Revista Biológica Tropical, 60(Suplemento 2), 159-171.
Alfaro, E. J., Chourio, X., Muñoz, Á. G., & Mason, S. J. (2018). Improved seasonal prediction skill of rainfall for the first season in Central America. International Journal of Climatology, 38(1), e255-e268.
Alfaro, E., & Lizano, O. (2001). Algunas relaciones entre las zonas de surgencia del Pacífico Centroamericano y los Océanos Pacíficos y Atlántico Tropical. Revista de Biología Tropical, 49(Suplemento 2), 185-193.
Álvarez-Fernández, S., Bachb, L.T., Taucherb, J., Riebesellb, U., Sommerb, U., Aberlec, N., Brussaardd, C. P. D., & Boersma, M. (2018). Plankton responses to ocean acidification: The role of nutrient limitation. Progress in Oceanography, 165, 11-18.
Amador, J. A. (2008). The Intra-Americas Seas Low-Level Jet (IALLJ): Overview and Future Research. Annals of the New York Academy of Sciences, 1146(1), 153-188.
Amador, J. A., Durán-Quesada, M., Rivera, E. R., Mora, G., Sáenz, F., Calderón, B., & Mora, N. (2016). The easternmost tropical Pacific. Part I: Seasonal and intraseasonal modes of atmospheric variability. Revista de Biología Tropical, 64(Supplement 1), 23-57.
Barry, J. P., & Dayton, P. K. (1991). Physical heterogeneity and the organization of marine communities. In Ecological heterogeneity (pp. 270-320). Springer, New York, NY.
Bathmann, U., Bundy, M. H., Clarke, M. E., Cowles, T. J., Daly, K., Dam, H. G., & Wishner, K. F. (2001). Future marine zooplankton research – a perspective. Marine Zooplankton Colloquium 2. Marine Ecology Progress Series, 222, 297-308.
Bednarski, M., & Morales-Ramírez, A. (2004). Composition, abundance and distribution of macrozooplankton in Culebra Bay, Gulf of Papagayo, Pacific coast of Costa Rica and its value as bioindicators of pollution. Revista de Biología Tropical, 53(Supplement 2), 105-118.
Boltovstoy, S. (Ed.) (1999). South Atlantic Zooplankton. Vol. 1+2. Leiden, The Netherlands: Backhuys Publishers.
Campos, A., & Suárez-Morales, E. (1994). Copépodos pelágicos del Golfo de México y Mar Caribe. I. Biología y Sistemática. Chetumal, México: CIQRO.
Chinchilla, G. (2013). Boletín Meterorológico Mensual, abril 2013. Boletín Meteorológico Mensual. Instituto Meteorológico de Costa Rica, San José, Costa Rica. https://www.imn.ac.cr/documents/10179/14637/ABRIL
Cripps, G., Flynn, K. J., & Lindeque, P. K. (2016). Ocean acidification affects the phyto-zooplankton trophic transfer efficiency. PLoS One, 11(4), e0151739. https://doi.org/10.1371/journal.pone.0151739
Escoto-Murillo, A., & Alfaro, E. J. (2021). Análisis de eventos fríos y cálidos por medio de datos de buceo: un enfoque de ciencia ciudadana en el Golfo de Papagayo, Costa Rica. Revista de Biologia Tropical, 69(Suppl. 2), S94-S104.
Färber-Lorda J., Lavín M. F., & Guerrero-Ruiz, M. A. (2004). Effects of wind forcing on the trophic conditions, zooplankton biomass and krill biochemical composition in the Gulf of Tehuantepec. Deep-Sea Research II, 51, 601–614.
Fiedler, P. C., & Lavín, M. F. (2017). Oceanographic conditions of the eastern tropical Pacific. In P. W. Glynn, D. Manzello & I. Enochs (Eds.), Coral Reefs of the Eastern Pacific: Persistence and Loss in a Dynamic Environment (pp. 59-83). Dordrecht: Springer Science+Business Media.
Gasca, R., & Suárez-Morales, E. (1996). Introduccion al estudio del zooplancton marino. Quintana Roo, México: ECOSUR/CONACIT.
Haury, L. R., McGowan, J. A., & Wiebe, P. H. (1978). Patterns and processes in the time-space scales of plankton distributions. In J. H. Steele, Spatial Pattern in Plankton Communities (pp. 277-327). Boston: Springer.
Jiménez, C. (2001). Seawater temperature measured at the surface and at two depths (7 and 12 m) in one coral reef at Culebra Bay, Gulf of Papagayo, Costa Rica. Revista de Biología Tropical, 49(Supplement 2), 153-161.
Keil, K. E., Klinger, T. J, Keister, J. E., & McLaskey, A. K. (2021). Comparative sensitivities of zooplankton to ocean acidification conditions in experimental and natural settings. Frontiers in Marine Sciences, 8, 613778. https://doi.org/10.3389/fmars.2021.613778
Legendre, L., & Demers, S. (1984). Towards dynamic biological oceanography and limnology. Canadian Journal of Fisheries and Aquatic Sciences, 41(1), 2-19.
Morales-Ramírez, A., Corrales-Ugalde, M., Esquivel-Garrote, O., Carrillo-Baltodano, A., Rodríguez-Saénz, K, & Sheridan, C. (2018). Estudios de zooplancton marino en Costa Rica: una revisión y perspectivas a futuro. Revista de Biología Tropical, 66(Suplemento 1), 24-41.
Morales-Ramírez, A., & Nowaczyk, J. (2006). El zooplancton gelatinoso del Golfo Dulce, Pacífico de Costa Rica, durante la transición de la estación lluviosa a la seca 1997-1998. Revista de Biología Tropical, 54(Suplemento 1), 201-223.
Morera, R. (2011). Boletín Meteorológico Mensual, febrero 2011. Boletín Meteorológico Mensual. Instituto Meteorológico de Costa Rica, San José, Costa Rica. https://www.imn.ac.cr/documents/10179/14633/FEBRERO
Morera, R. (2013). Boletín Meteorológico Mensual, febrero 2013. Boletín Meteorológico Mensual. Instituto Meteorológico de Costa Rica, San José, Costa Rica. https://www.imn.ac.cr/documents/10179/14637/FEBRERO
Naranjo, J. (2012). Boletín Meteorológico Mensual, junio 2012. Boletín Meteorológico Mensual. Instituto Meteorológico de Costa Rica, San José, Costa Rica. https://www.imn.ac.cr/documents/10179/14635/JUNIO
Naranjo, J. (2013). Boletín Meteorológico Mensual, agosto 2013. Boletín Meteorológico Mensual. Instituto Meteorológico de Costa Rica, San José, Costa Rica. https://www.imn.ac.cr/documents/10179/14637/AGOSTO
Naranjo, J., & Poleo, D. (2012). Boletín Meteorológico Mensual, octubre 2012. Boletín Meteorológico Mensual. Instituto Meteorológico de Costa Rica, San José, Costa Rica. https://www.imn.ac.cr/documents/10179/14635/OCTUBRE
Paffenhöfer, G. A, Huntley, M. E., & Davis, C. S. (1989). Future marine zooplankton research – a perspective. Marine Zooplankton Colloquium 1. Marine Ecology Progress Series, 55, 197-305.
Palomares-García, R., Suárez-Morales, E., & Hernández-Trujillo, S. (1998). Catálogo de los copépodos (Crustacea) pelágicos del Pacífico Mexicano. México: CICIMAR/ECOSUR.
Pinel-Alloul, P. (1995). Spatial heterogeneity as a multiscale characteristic of zooplankton community. Hydrobiologia, 300(1), 17-42.
Poleo, D. (2011). Boletín Meteorológico Mensual, abril 2011. Boletín Meteorológico Mensual. Instituto Meteorológico de Costa Rica, San José, Costa Rica. Tomado de https://www.imn.ac.cr/documents/10179/14635/ABRIL
Poleo, D., & Stolz, W. (2012). Boletín Meteorológico Mensual, agosto 2012. Boletín Meteorológico Mensual. Instituto Meteorológico de Costa Rica, San José, Costa Rica. https://www.imn.ac.cr/documents/10179/14635/AGOSTO
Poleo, D., & Stolz, W. (2013). Boletín Meteorológico Mensual, junio 2013. Boletín Meteorológico Mensual. Instituto Meteorológico de Costa Rica, San José, Costa Rica. https://www.imn.ac.cr/documents/10179/14637/JUNIO
Postal, L., Fockand, H., & Hage, W. (2000). Abundance and biomass. In R. P. Harris, P. Wiebe, J. Lenz, H. R. Skjoldal, & M. Huntley (Eds.), ICES Zooplankton Methodology Manual (pp. 83-192). San Diego, California: Academic Press.
Quesada-Alpízar, M. A., & Morales-Ramírez, A. (2004). Comportamiento de las masas de agua en el Golfo Dulce durante un período El Niño (1997–1998). Revista de Biología Tropical, 53(Suplemento 2), 95-103.
Quesada-Alpízar, M. A., & Morales-Ramírez, A. (2006). Abundancia, composición y distribución vertical del zooplancton no gelatinoso en el Golfo Dulce, costa pacífica de Costa Rica, durante 1997-1998: posible efecto fenómeno de El Niño. Revista de Biología Tropical, 54(Suplemento1), 225-240.
Rodríguez-Saénz, K., & Morales-Ramírez, A. (2012). Composición y distribución del mesozooplancton en una zona de afloramiento costero (Bahía Culebra, Pacífico Norte de Costa Rica) durante La Niña 1999 y el 2000. Revista de Biología Tropical, 60(Suplemento 2), 143-157.
Sánchez-Noguera, C., Shuldreier, I., Cortés, J., Morales-Ramírez, A., Wild, C., & Rixen, T. (2018). Natural ocean acidification at Papagayo upwelling system (north Pacific Costa Rica): implications for reef development. Biogeosciences, 15, 2349-2360.
Solano, E. (2011). Boletín Meterorológico Mensual, diciembre 2011. Boletín Meteorológico Mensual. Instituto Meteorológico de Costa Rica, San José, Costa Rica. https://www.imn.ac.cr/documents/10179/14633/DICIEMBRE
Solano, E. (2012). Boletín Meterorológico Mensual, diciembre 2012. Boletín Meteorológico Mensual. Instituto Meteorológico de Costa Rica, San José, Costa Rica. Tomado de https://www.imn.ac.cr/documents/10179/14635/DICIEMBRE
Soley, F. J. (1994). Suavizamiento de series cronológicas geofísicas con ruido blanco y rojo aditivo. Revista de Geofísica, 41, 33-58.
Spilling, K., Allanah, J. P., Virkkala, N., Hastings, T., Lischka, S., Stuhr, A., Bermúdez, R., Czerny, J., Boxhammer, T., Schulz, K.G., Ludwig, A., & Riebesell, U. (2016). Ocean acidification decreases plankton respiration: evidence from a mesocosm experiment. Biogeosciences, 13, 4707–4719.
Steele, J. H. (1978). Spatial Pattern in Plankton Communities (Vol. 3). Boston: Springer Science & Business Media.
Taucher, J., Haunost, M., Boxhammer, T., Lennart, T. B., Algueró-Muñiz, M., & Riebesell, U. (2017). Influence of ocean acidification on plankton community structure during a winter-to-summer succession: An imaging approach indicates that copepods can benefit from elevated CO2 via indirect food web effects. PLoS ONE, 12(2), e0169737. https://doi.org/10.1371/journal.pone.0169737
Telesh, I. V., & Khlebovich, V. V. (2010). Principal processes within the estuarine salinity gradient: a review. Marine Pollution Bulletin, 61(4-6), 149-155.
Ureña, P., Alfaro, E., & Soley, J. (2016). Propuestas metodológicas para el rellenado de datos ausentes en series de tiempo geofísicas. Guía Práctica de uso. Documento Técnico. Centro de Investigaciones Geofísicas, Escuela de Física y Centro de Investigaciones en Ciencias del Mar y Limnología, Universidad de Costa Rica. http://www.kerwa.ucr.ac.cr/handle/10669/28888.2
Vanschoenwinkel, B., Mergeay, J., Pinceel, T., Waterkeyn, A., Vandewaerde, H., Seaman, M., & Brendonck, L. (2011). Long distance dispersal of zooplankton endemic to isolated mountaintops - an example of an ecological process operating on an evolutionary time scale. PLoS ONE, 6(11), e26730. https://doi.org/10.1371/journal.pone.0026730
Comments
This work is licensed under a Creative Commons Attribution 4.0 International License.