Abstract
Introduction: The Andes are characterized by an abundance of water resources and flows are frequently regulated by reservoirs for the generation of energy. The effects of regulation on aquatic macroinvertebrate communities are not well known in Colombia. Objective: To test the hypothesis that regulated currents have less macroinvertebrate diversity. Methods: We collected water and organism samples before, and after, the regulation of the Tafetanes, Calderas and Arenosa rivers, in Antioquia, Colombia, during various hydrological cycles (rain, transition and drought) and climatic phenomena (ENSO/El Niño Phenomenon) between 2016 and 2018. Results: We collected 53 214 individuals, from 165 taxa, mostly from the orders Ephemeroptera, Plecoptera, Trichoptera and Diptera (90 % of captures). Changes in diversity responded to spatial differences rather than to physicochemical variables: diversity was higher in non-regulated sites, regardless of the hydrological period or associated ENSO. Most species were found in all sampling sites, but abundance was higher in the site with the best habitat conservation status. Conclusion: The results support the hypothesis that physical barriers have effects on macroinvertebrate diversity at the local scale, however, the condition of adjacent habitats also seems to play an important role in preserving richness and abundance. The conservation of forest adjacent to the riverbed could mitigate the impacts of regulation.
References
Anderson, E. P., Jenkins, C. N., Heilpern, S., Maldonado-Ocampo, J. A., Carvajal-Vallejos, F. M., Encalada, A. C., Rivadeneira, J. F., Hidalgo, M., Cañas, C. M., Ortega, H., Salcedo, N., Maldonado, M., & Tedesco, P. A. (2018). Fragmentation of Andes-to-Amazon connectivity by hydropower dams. Science Advances, 4(1), eaao1642.
Andrade, I. C. P., Krolow, T. K., Boldrini, R., & Pelicice, F. M. (2020). Diversity of EPT (Ephemeroptera, Plecoptera, Trichoptera) along streams fragmented by waterfalls in the Brazilian Savanna. Neotropical Entomology, 49(2), 203–212. https://doi.org/10.1007/s13744-019-00751-z
APHA. (2017). Standard Methods for examination of water and wastewater. American Public Health Association.
Archangelsky, M., Manzo, V., Michat, M. C., & Torres, P. L. (2009). Coleoptera. En E. Domínguez, H. R. Fernández (Eds.), Macroinvertebrados Bentónicos Sudamericanos: Sistemática y Biología (pp. 411–468). Fundación Miguel Lillo.
Aristizábal, H. (2002). Los hemípteros de la película superficial del agua en Colombia. Academia Colombiana de Ciencias Exactas, Físicas y Naturales.
Bedoya, I., & Roldán, G. (1984). Estudio de los dípteros acuáticos en diferentes pisos altitudinales en el Departamento de Antioquia. Revista de la Asociación Colombiana de Ciencias Biológicas, 2(2), 113–134.
Blanco, J. F. (2003). Interannual variation of macroinvertebrate assemblages in a dry-forested stream in Western cordillera: a role for El Niño and La Niña? Boletín Ecotrópica: Ecosistemas Tropicales, 37, 3–30.
Bredenhand, E., & Samways, M. J. (2009). Impact of a dam on benthic macroinvertebrates in a small river in a biodiversity hotspot: Cape Floristic Region, South Africa. Journal of Insect Conservation, 13(3), 297–307.
Buss, D. F., Baptista, D. F., Silveira, M. P., Nessimian, J. L., & Dorvillé, L. F. (2002). Influence of water chemistry and environmental degradation on macroinvertebrate assemblages in a river basin in south-east Brazil. Hydrobiologia, 481(1), 125–136. https://doi.org/10.1023/A:1021281508709
Cranston, P. J. (1995). Chironomids: From Genes to Ecosystems. CSIRO Australia.
Cummins, K. W. (2008). Ecology and distribution of aquatic insects. In R. W. Merritt, K. W. Cummins, & M. B. Berg (Eds.), An Introduction to the aquatic insects of North America (4th ed., pp. 105–122). Kendall/Hunt Publishing Company.
Dudgeon, D. (Ed.). (2011). Tropical stream ecology. Elsevier.
ESRI. (2019). ArcGIS (version 10.7.1 for Desktop, software). Environmental Systems Research Institute, Redlands, CA, USA.
Forero, L. C., Longo, M., Ramírez, J. J., & Chalar, G. (2014). Índice de calidad ecológica con base en macroinvertebrados acuáticos para la cuenca del río Negro (ICE RN-MAE), Colombia. Revista de Biología Tropical, 62, 233–247. https://doi.org/10.15517/rbt.v62i0.15790
García, M. C., Piñeros-Botero, A., Bernal-Quiroga, F. A., & Ardila-Robles, E. (2012). Variabilidad climática, cambio climático y el recurso hídrico en Colombia. Revista de Ingeniería, 36, 60–64. https://doi.org/10.16924/revinge.36.11
Guisande, C., Heine, J., González-DaCosta, J., & García-Roselló, E. (2014). RWizard Software. University of Vigo. Vigo, Spain.
Gutiérrez-Garaviz, J., Peláez-Rodríguez, M., & Ovalle-Serrano, H. (2016). Macroinvertebrados acuáticos presentes en dietas de peces de la cuenca del río Hacha (Caquetá, Colombia). Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 40(156), 420–432. http://dx.doi.org/10.18257/raccefyn.344
Hammer, Ø., Harper, D. A. T., & Ryan, P. D. (2001). Past: paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4(1), 9.
Holdridge, L. R. (1967). Life zone ecology. Tropical Science Center.
Hurtado, S., Trejo, F. G., & Yurrita, P. J. G. (2005). Importancia ecológica de los macroinvertebrados bentónicos de la subcuenca del río San Juan, Querétaro, México. Folia Entomológica Mexicana, 44(3), 271–286.
IDEAM. (2020a). Atlas Climatológico, Colombia. http://atlas.ideam.gov.co/visorAtlasClimatologico.html
IDEAM. (2020b). Boletín Climatológico Mensual. http://www.ideam.gov.co/web/tiempo-y-clima/climatologico-mensual
Iñiguez-Armijos, C., Hampel, H., & Breuer, L. (2018). Land-use effects on structural and functional composition of benthic and leaf-associated macroinvertebrates in four Andean streams. Aquatic Ecology, 52(1), 77–92. https://doi.org/10.1007/s10452-017-9646-z
International Conservation. (2020). Tumbes-Choco-Magdalena Hotspot. https://www.cepf.net/our-work/biodiversity-hotspots/tumbes-choco-magdalena
Jost, L. (2006). Entropy and diversity. Oikos, 113(2), 363–375. https://doi.org/10.1111/j.2006.0030-1299.14714.x
Kruskal, J. B. (1964). Nonmetric multidimensional scaling: a numerical method. Psychometrika, 29(2), 115–129. https://doi.org/10.1007/BF02289694
Lees, A. C., Peres, C. A., Fearnside, P. M., Schneider, M., & Zuanon, J. A. (2016). Hydropower and the future of Amazonian biodiversity. Biodiversity and Conservation, 25(3), 451–466. https://doi.org/10.1007/s10531-016-1072-3
Leite, G. F., Silva, F. T. C., Gonçalves, J. F. J., & Salles, P. (2015). Effects of conservation status of the riparian vegetation on fish assemblage structure in neotropical headwater streams. Hydrobiologia, 762(1), 223–238. https://doi.org/10.1007/s10750-015-2351-9
Longo, M., Zamora, H., Guisande, C., & Ramírez, J. J. (2010). Dinámica de la comunidad de macroinvertebrados en la quebrada Potrerillos (Colombia): respuesta a los cambios estacionales de caudal. Limnetica, 29(2), 195–210.
Lozano-Ortiz, L. (2005). La bioindicación de la calidad del agua: importancia de los macroinvertebrados en la cuenca alta del río Juan Amarillo, cerros orientales de Bogota. Umbral Científico, (7), 5–11.
Manzo, V. (2005). Key to the South America genera of Elmidae (Insecta: Coleoptera) with distributional data. Studies on Neotropical Fauna and Environment, 40(3), 201–208.
Manzo, V., & Archangelsky, M. (2008). A key to the known larvae of South American Elmidae (Coleoptera: Byrrhoidea), with a description of the mature larva of Macrelmis saltensis Manzo. Annales de Limnologie-International Journal of Limnology, 44(1),63–74.
Martínez, Y., Gutiérrez, D., Álvarez-Troncoso, R., & Garrido, J. (2020). Impact of small-scale hydropower stations on macroinvertebrate communities for regulated rivers. Limnetica, 39(1), 317–334. https://doi.org/10.23818/limn.39.21
Meißner, T., Sures, B., & Feld, C. K. (2019). Multiple stressors and the role of hydrology on benthic invertebrates in mountainous streams. Science of The Total Environment, 663, 841–851. https://doi.org/10.1016/j.scitotenv.2019.01.288
Melo, A. S., & Froehlich, C. G. (2001). Macroinvertebrates in neotropical streams: richness patterns along a catchment and assemblage structure between 2 seasons. Journal of the North American Benthological Society, 20(1), 1–16. https://doi.org/10.2307/1468184
Merritt, R. W., Cummins, K. W., & Berg, M. B. (Eds.). (2008). An introduction to the aquatic insects of North America (4th ed.). Kendall/Hunt Publishing Company.
Mesa, L. M. (2010). Effect of spates and land use on macroinvertebrate community in Neotropical Andean streams. Hydrobiologia, 641(1), 85–95. https://doi.org/10.1007/s10750-009-0059-4
Milner, V. S., Yarnell, S. M., & Peek, R. A. (2019). The ecological importance of unregulated tributaries to macroinvertebrate diversity and community composition in a regulated river. Hydrobiologia, 829(1), 291–305. https://doi.org/10.1007/s10750-018-3840-4
Moreno, C. E., Barragán, F., Pineda, E., & Pavón, N. P. (2011). Reanálisis de la diversidad alfa: alternativas para interpretar y comparar información sobre comunidades ecológicas. Revista Mexicana de Biodiversidad, 82(4), 1249–1261. https://doi.org/10.22201/ib.20078706e.2011.4.745
NOAA. (2020). Climate Prediction Center. https://www.cpc.ncep.noaa.gov/products/predictions/long_range/two_class.php
Ospina-Torres, R., Mey, W., & Jaime-Murcia, P. (2018). Two new orthoclad species from Colombian Andes (Diptera: Chironomidae). Zootaxa, 4472(2), 385–392. https://doi.org/10.11646/zootaxa.4472.2.11
Posada-García, J. A., & Roldán-Pérez, G. (2003). Clave ilustrada y diversidad de las larvas de Trichoptera en el nor-occidente de Colombia. Caldasia, 25(1), 169–192.
Poveda, G., Jaramillo, A., Gil, M. M., Quiceno, N., & Mantilla, R. I. (2001). Seasonally in ENSO‐related precipitation, river discharges, soil moisture, and vegetation index in Colombia. Water Resources Research, 37(8), 2169–2178. https://doi.org/10.1029/2000WR900395
R Core Team. (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. https://www.R-project.org
Ríos-Ocampo, J. P., & Vélez-Gómez, L. D. (2015). Efectos fiscales de los asentamientos hidroeléctricos: el caso de la cuenca de los ríos Negro y Nare en Colombia. Semestre Económico, 18(38), 137–160. https://doi.org/10.22395/seec.v18n38a5
Ríos-Pulgarín, M. I., Barletta, M., Arango-Jaramillo, M. C., & Mancera-Rodríguez, N. J. (2016). The role of the hydrological cycle on the temporal patterns of macroinvertebrate assemblages in an Andean foothill stream in Colombia. Journal of Limnology, 75, 107–120. https://doi.org/10.4081/jlimnol.2016.1394
Ríos-Touma, B., Encalada, A. C., & Prat-Fornells, N. (2011). Macroinvertebrate assemblages of an Andean high‐altitude tropical stream: the importance of season and flow. International Review of Hydrobiology, 96(6), 667–685. https://doi.org/10.1002/iroh.201111342
Rodríguez-Barrios, J., Ospina-Tórres, R., & Turizo-Correa, R. (2011). Grupos funcionales alimentarios de macroinvertebrados acuáticos en el río Gaira, Colombia. Revista de Biología Tropical, 59(4), 1537–1552.
Roldán-Pérez, G., & Ramírez-Restrepo, J. J. (2008). Fundamentos de limnología neotropical. Editorial Universidad de Antioquia.
Roldán, G. (1996). Guía para el estudio de los macroinvertebrados acuáticos del Departamento de Antioquia. Fondo para la Protección del Medio Ambiente "José Celestino Mutis".
Spangler, P. J., & Santiago-Fragoso, S. (1992). The aquatic beetle subfamily Larainae (Coleoptera: Elmidae) in Mexico, Central America, and the West Indies. Smithsonian Contributions to Zoology, (528), 1–74.
Stanford, J. A., & Ward, J. V. (2001). Revisiting the serial discontinuity concept. Regulated Rivers: Research & Management: An International Journal Devoted to River Research and Management, 17(4‐5), 303–310. https://doi.org/10.1002/rrr.659
Terra, B. D. F., & Araújo, F. G. (2011). A preliminary fish assemblage index for a transitional river–reservoir system in southeastern Brazil. Ecological Indicators, 11(3), 874–881. https://doi.org/10.1016/j.ecolind.2010.11.006
Tomanova, S., & Usseglio-Polatera, P. (2007). Patterns of benthic community traits in neotropical streams: relationship to mesoscale spatial variability. Fundamental and Applied Limnology-Archiv fur Hydrobiologie, 170(3), 243–256. https://doi.org/10.1127/1863-9135/2007/0170-0243
Townsend, C. R., & Hildrew, A. G. (1994). Species traits in relation to a habitat templet for river systems. Freshwater Biology, 31(3), 265–275. https://doi.org/10.1111/j.1365-2427.1994.tb01740.x
Villeneuve, B., Piffady, J., Valette, L., Souchon, Y., & Usseglio-Polatera, P. (2018). Direct and indirect effects of multiple stressors on stream invertebrates across watershed, reach and site scales: a estructural equation modelling better informing on hydromorphological impacts. Science of the Total Environment, 612, 660–671. https://doi: 10.1016/j.scitotenv.2017.08.197
Wang, X., Cai, Q., Jiang, W., & Qu, X. (2013). Inter-annual patterns in the stability and persistence of stream macroinvertebrate communities: relationship with water physicochemical parameters. Journal of Freshwater Ecology, 28(1), 79–90. https://doi.org/10.1080/02705060.2012.708673
Winemiller, K. O., Flecker, A. S., & Hoeinghaus, D. J. (2010). Patch dynamics and environmental heterogeneity in lotic ecosystems. Journal of the North American Benthological Society, 29(1), 84–99. https://doi.org/10.1899/08-048.1
Wu, H., Chen, J., Xu, J., Zeng, G., Sang, L., Qiang, L., Zhengjie, Y., Dai, J., Dacong, Y., Liang, J., & Ye, S. (2019). Effects of dam construction on biodiversity: a review. Journal of Cleaner Production, 221, 480–489.
##plugins.facebook.comentarios##
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright (c) 2022 Revista de Biología Tropical