Revista de Biología Tropical ISSN Impreso: 0034-7744 ISSN electrónico: 2215-2075

OAI: https://revistas.ucr.ac.cr/index.php/rbt/oai
Effect of ecoregion and river type on neotropical Chironomidae (Diptera) from humid mountain to semiarid lowland
PDF
HTML

Keywords

non-biting midges;
Tanypodinae;
Diamesinae;
Podonominae;
macroecology,
rivers,
South America.
Quironómidos;
Tanypodinae;
Diamesinae
Podonominae;
macroecología;
ríos;
Sudamérica

How to Cite

Pero, E. J. I., Torrejón, S. E., & Molineri, C. (2023). Effect of ecoregion and river type on neotropical Chironomidae (Diptera) from humid mountain to semiarid lowland: Chironomidae from Yungas and Chaco. Revista De Biología Tropical, 71(1), e50081. https://doi.org/10.15517/rev.biol.trop.v71i1.50081

Abstract

Introduction: Chironomidae (Diptera) is the most widespread and abundant aquatic insect family in freshwater ecosystems. Chironomids are considered good indicators of water quality but are seldom identified at the genus level in broad spatial scale studies. Objective: To identify environmental conditions associated with chironomids in an altitudinal gradient. Methods: We compared ecoregions, river types, and seasons, for chironomids in neotropical streams and rivers (18 river sites; 2014-2018; Yungas rainforest and Western Chaco dry forest, Argentina). We used non-metric multidimensional scaling, dissimilarity, envfit analysis and rank-abundance curves. Results: Chironomic “assemblages” matched both ecoregions and river types. However, ecoregions presented a better fit with species composition. The stenothermal taxa of Orthocladiinae were dominant at high elevations and the eurythermal Chironominae in lowland rivers. Altitude, water temperature and conductivity were important. Seasonal differences were smaller than ecoregional differences. Conclusions: Ecoregions, altitude, water temperature and conductivity correlated with chironomid communities. Orthocladiinae were dominant at high elevations and Chironominae in lowland rivers.

https://doi.org/10.15517/rev.biol.trop..v71i1.50081
PDF
HTML

References

Acosta, R., & Prat, N. (2010). Chironomidae assemblages in high altitude streams of the Andean region of Peru. Fundamental and Applied Limnology, 177, 57–79.

Andersen, T., Cranston, P. S., & Epler, J. H. (2013). The larvae of Chironomidae (Diptera) of the Holartic Region. Keys and diagnoses. Insect Systematics and Evolution, 66, 387–556.

Armitage, P., Cranston, P. S., & Pinder, L. C. V. (1995). The Chironomidae. The biology and ecology of non-biting midges. Chapman and Hall.

Brown, A. D. (2000). Development threats to biodiversity and opportunities for conservation in the mountain ranges of the upper Bermejo River basin, NW Argentina and SW Bolivia. Ambio, 29, 445–449.

Brown, A. D., Grau, H. R., Malizia, L. R., & Grau, A. (2001). Argentina. In M. Kapelle & A. D. Brown (Eds.), Bosques Nublados del Neotrópico (pp. 623–659). INBio.

Brown, A. D., & Pacheco, S. (2006). Propuesta de actualización del mapa ecorregional de la Argentina. In A. Brown, U. Martínez Ortiz, M. Acerbi, & J. Corcuera (Eds.), La situación ambiental argentina 2005 (pp. 28–31). Fundación Vida Silvestre, Argentina.

Clarke, K. R., & Ainsworth, M. (1993). A method of linking multivariate community structure of environmental variables. Marine Ecology Process Series, 92, 205–219.

Cranston, P. S., & Krosch, M. (2011). Barbadocladius Cranston and Krosch, a new genus of Orthocladiinae (Diptera: Chironomidae) from South America. Neotropical Entomology, 40, 560–567.

Dantas, G. P., Araujo, A. A. H., & Hamada, N. (2020). A new species of Rheotanytarsus Thienemann & Bause (Diptera: Chironomidae) from Peruvian Andes, with updated key to South American species. Zootaxa, 4722, 195–200.

Dos Santos, D. A., & Deutsch, R. (2010). The positive matching index: a new similarity measure with optimal characteristics. Pattern Recognition Letters, 31, 1570–1576.

Dos Santos, D. A., Molineri, C., Nieto, C., Zuñiga, M. C., Emmerich, D., Fierro, P., Pessacq, P., Ríos-Touma, B., Márquez, J., Gomez, D., Salles, F. F., Encalada, A. C., Principe, R., Gómez, G. C., Zarges, C. V., & Domínguez, E. (2018). Cold/Warm stenothermic freshwater macroinvertebrates along altitudinal and latitudinal gradients in Western South America: A modern approach to an old hypothesis with updated data. Journal of Biogeography, 45, 1571–1581.

Eggermont, H., & Heiri, O. (2012). The chironomid-temperature relationship: expression in nature and palaeoenvironmental implications. Biological Reviews of the Cambridge Philosophical Society, 87(2), 430–56.

Epler, J. H. (1995). Identification Manual for the Larval Chironomidae (Diptera) of Florida. Department of Environmental Protection, Florida.

Epler, J. H. (2001). Identification Manual for the Larval Chironomidae (Diptera) of North and South Carolina. A guide to the taxonomy of the midges of the southeastern United States including Florida (Special Publication SJ2001-SP13). North Carolina Department of Environmental and Natural Resources, Raleigh NC and St. Johns River Management District.

Ferrington, L. (2008). Global diversity of non-biting midges (Chironomidae; Insecta-Diptera) in freshwater. Hydrobiologia, 595, 447–455.

Hawkins, C. P., Bisson, P. A., Bryant, M., Decker, L., Gregory, S. V., McCullough, D. A., Overton, K., Reeves, G., Steadman, R. J., & Young, M. (1993). A hierarchical approach to classifying habitats in small streams. Fisheries, 18, 3–11.

Hawkins, C. P., Olson, J. R., & Hill, R. A. (2010). The reference condition: predicting benchmarks for ecological and water-quality assessments. Journal of the North American Benthological Society, 29, 312–343.

Langton, P. H., & Casas, J. (1998). Changes in chironomid assemblage composition in two Mediterranean mountain streams over a period of extreme hydrological conditions. Hydrobiologia, 390, 37–49.

Leiva, M., Marchese, M., & Diodato, L. (2020). Structure, distribution patterns and ecological responses to hydrological changes in benthic macroinvertebrate assemblages in a regulated semi-arid river: baseline for biomonitoring studies. Marine and Freshwater Research, 72, 200–212.

Lencioni, V., Cranston, P. S., & Makarchencko, E. A. (2018). Recent advances in the study of Chironomidae: An overview. Journal of Limnology, 77, 1–6.

Lindergaard, C., & Brodensen, K. P. (1995). Distribution of Chironomidae (Diptera) in the River Continnum. In P. Craston (Ed.), Chironomids from Genes to Ecosystems (pp. 257–271). CSIRO Publications.

Medina, A. I., Scheibler, E. E., & Paggi, A. C. (2008). Distribución de Chironomidae en dos sistemas fluviales ritronicos (Andino-serrano) de Argentina. Revista de la Sociedad Entomológica Argentina, 67, 69–79.

Merritt, R. W., & Cummins, K. W. (1996). An introduction to the Aquatic Insects of North America. Kendall/Hunt Publishing Company.

Mesa, L. M. (2012). Interannual and seasonal variability of macroinvertebrates in monsoonal climate streams. Brazilian Archives of Biology and Technology, 55, 403–410.

Minneti, J. L. (1999). Atlas climático del Noroeste Argentino. Laboratorio Climatológico sudamericano, Fundación Zon Caldenius.

Molineri, C., Tejerina, E. G., Torrejón, S. E., Pero, E. J. I., & Hankel, G. E. (2020). Indicative value of different taxonomic levels of Chironomidae for assessing the water quality. Ecological Indicators, 108, 105703.

Morrone, J. J. (2014). Biogeographical regionalization of the Neotropical region. Zootaxa, 3782, 1–110.

Nicasio, G., & Juen, L. (2015). Chironomidae as indicators in freshwater ecosystems: an assessment of the literature. Insect Conservation and Diversity, 8, 393–403.

Nieto, C., Dos Santos, D. A., Izquierdo, A., & Grau, H. R. (2017). Modelling beta diversity of aquatic macroinvertebrates in High Andean wetlands. Journal of Limnology, 76, 555–570.

Nollet, L. M. L., & De Gelder, L. S. P. (2014). Handbook of water analysis 3. CRC Press.

Pero, E. J. I., Georgieff, S. M., Gultemirian, L. M., Romero, F., Hankel, G. E., & Domínguez, E. (2020). Ecoregions, climate, topography, physicochemical, or a combination of all: Which criteria are the best to define river types based on abiotic variables and macroinvertebrates in neotropical rivers? Science of the Total Environment, 738, 140303.

Pero, E. J. I., Hankel, G. E., Molineri, C., & Domínguez, E. (2019). Correspondence between stream benthic macroinvertebrate assemblages and ecoregions in northwestern Argentina. Freshwater Science, 38, 64–76.

Plóciennik, M., & Karaouzas, I. (2014). The Chironomidae (Diptera) fauna of Greece: ecological distribution and patterns, taxa list and new records. Annales de Limnologie, 50, 19–34.

Poff, N. L., & Ward, J. V. (1989). Implications of streamflow variability and predictability for lotic community structure: a regional analysis of streamflow patterns. Canadian Journal of Fisheries and Aquatic Science, 46, 1805–1817.

Prat, N., Paggi, A., Ribera, C., Acosta, R., Ríos-Touma, B., Villamarín, C., Rivera, F., Ossa, P., & Rieradevall, M. (2017). The Cricotopus (Oliveiriella) (Diptera: Chironomidae) of the High Altitude Andean Streams, with Description of a New Species, C. (O.). rieradevallae. Neotropical Entomology, 47, 256–270.

Principe, R. E., Boccolini, M. F., & Corigliano, M. C. (2008). Structural and Spatio-temporal dinamycs of Chironomidae fauna (Diptera) in Up-land and Low-lands fluvial habitats of the Chocancharava River Basin (Argentina). International Review of Hydrobiology, 93, 342–357.

Puntí, T., Rieradevall, M., & Prat, N. (2007). Chironomidae assemblages in reference condition in Mediterranean streams: environmental factors, seasonal variability and ecotypes. Fundamental and Applied Limnology, 170, 149–165.

Puntí, T., Rieradevall, M., & Prat, N. (2009). Environmental factors, spatial variation and specific requirement of Chironomidae in Mediterranean reference streams. Journal of the North American Benthological Society, 28, 247–265.

R Core Team. (2019). R: A language and environment for statistical computing. R Foundation for Statistical Computing. http://www.R-project.org/

Resh, V., Norrish, R. H., & Barbour, M. T. (1995). Design and implementation of rapid assessment approaches for water resource monitoring using benthic macroinvertebrates. Australian Journal of Ecology, 20, 198–219.

Rodríguez Garay, G. N., Paggi, A. C., & Scheibler, E. E. (2020). Chironomidae assemblages at different altitudes in Northwest Argentina: the role of local factors. Anais da Academia Brasileira de Ciências, 92, e20190953.

Rossaro, B., Lencioni, V., Boggero, A., & Marziali, L. (2006). Chironomids from Southern Alpine running waters: ecology, biogeography. Hydrobiologia, 562, 231–246.

Rossaro, B., Marziali, L., Montagna, M., Magoga, G., Zaupa, S., & Boggero, A. (2022). Factors controlling morphotaxa distributions of Diptera Chironomidae in freshwaters. Water, 14, 1014.

Rundle, S. D., Bilton, D. T., & Foggo, A. (2007). By wind, wings or water: body size, dispersal and range size in aquatic invertebrates. In A. G. Hildrew, D. G. Raffaelli, & R. Edmonds-Brown (Eds.), Body size: the structure and function of aquatic ecosystems (pp. 186–209). Cambridge University Press.

Scheibler, E. E., Roig-Juñent, S. A., & Claps, M. C. (2014). Chironomid (Insecta: Diptera) assemblages along an Andean altitudinal gradient. Aquatic Biology, 20, 169–184.

Schöll, F., & Haybach, A. (2004). Typology of large European rivers according to their Chironomidae communities (Insecta: Diptera). Annales de Limnologie, 40, 309–316.

Shadrin, N. V., Anufriieva, E. V., Belyakov, V. P., & Bazhora, A. I. (2017). Chironomidae larvae in hypersaline waters of the Crimea: diversity, distribution, abundance and production. The European Zoological Journal, 84(1), 61–72.

Shadrin, N. V., Belyakov, V. P., Bazhora, A. I., & Anufriieva, E. V. (2019). The role of salinity as an environmental filtering factor in the determination of the Diptera taxonomic composition in the Crimean waters. Knowledge & Management of Aquatic Ecosystems, 2019(420), 3.

Tejerina, E., & Malizia, A. (2012). Chironomidae (Diptera) larvae assemblages differ along an altitudinal gradient and temporal periods in a subtropical montane stream in Northwest Argentina. Hydrobiologia, 686, 41–54.

Tejerina, E., & Molineri, C. (2007). Comunidades de Chironomidae (Diptera) en arroyos de montaña del NOA: Comparación entre Yungas y Monte. Revista de la Sociedad Entomológica Argentina, 66, 169–177.

Tejerina, E. G., & Paggi, A. C. (2009). A new Neotropical species of Oliveiriella Wiedenbrug & Fittkau (Diptera: Chironomidae) from Argentina, with description of all its life stages. Aquatic Insects, 31, 91–98.

Tonkin, J. D., Poff, N. L., Bond, N. R., Horne, A., Merritt, D. M., Reynolds, L. V., Olden, J. D., Ruhi, A., & Lytle, D. A. (2019). Prepare river ecosystems for an uncertain future. Nature, 570, 301–303.

Trivino-Strixino, S., & Strixino, G. (1995). Larvas de Chironomidae (Diptera) do estado de São Paulo. Guia de identificação e diagnose dos gêneros. Universidade Federal de São Carlos.

Valentin, J. L. (2012). Ecologia numérica: uma introdução à análise multivariada de dados ecológicos. Editora Interciência.

Villamarín, C., Villamarín-Cortez, S., Salcido, D. M., Herrera-Madrid, M., & Ríos-Touma, B. (2021). Drivers of diversity and altitudinal distribution of chironomids (Diptera: Chironomidae) in the Ecuadorian Andes. Revista de Biología Tropical, 69, 113–126.

Wiederholm, T. (1983). Chironomidae of Holartic region - Key and diagnosis (Part 1). Larvae. Entomologica Scandinavica, 19, 1–457.

Wolf, B., Kiel, E., Hagge, A., Krieg, H. J., & Feld, C. K. (2009). Using the salinity preferences of benthic macroinvertebrates to classify running waters in brackish marshes in Germany. Ecological Indicators, 9, 837–847.

Zanotto-Arpellino, J. P., Príncipe, R. E., Oberto, A. M., & Gualdoni, C. M. (2015). Variación espacio-temporal de Chironomidae (Diptera) bentónicos y derivantes en un arroyo serrano en Córdoba, Argentina. Iheringia, 105, 41–52.

Comments

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2023 Revista de Biología Tropical

Downloads

Download data is not yet available.