Abstract
Introduction: Ecological restoration is a strategy that allows recovering goods and services in disturbed ecosystems. One of the activities that generates greatest impact on forest ecosystems is open pit mining, as it causes strong changes in the structure and functioning of these systems. Objective: The aims of this work was to evaluate the effect of successional age and distance to the adjacent forest (reference forest) on the biological structure and composition of the plant community in abandoned gold mines in the tropical rain forest of Chocó in Colombia. Methods: Between June and December 2012, and June and October 2021, vegetation sampling was carried out in mines with 6, 10, 15, 19 and 24 years of abandonment and in the reference forest. In each mine of different ages and the reference forest, four 2×50 m plots were established and distributed perpendicularly to the edge of the forest, at 50 m and 100 m distance (two plots per distance) taking as a starting point split the forest-mine edge (ecotone). Results: 300 species, 193 genera and 75 families were identified. The richness, diversity, and evenness changes little with the time of abandonment in the mines but reaches higher values in the reference forest. Species composition is similar between mines but differs substantially from the reference forest (only 7% similarity). Conclusions: The results suggest that 24 years is a short time to appreciate a substantial recovery of the biological structure and composition of the vegetation in mines if it is compared with the reference forest where the richness, diversity, evenness are higher and the composition of species differs substantially. Although the distance to the adjacent forest seems to have no effect on these variables, it is clear that other factors such as the quality of the substrate and the reproductive strategies of some herbaceous species of the families Cyperaceae and Melastomataceae, as well as some trees such as Cespedesia spathulata and Miconia reducens, they play an important role in the early natural revegetation of abandoned mines in the pluvial forests of the Colombian biogeographical Chocó.
References
Aide, T. M., Zimmerman, J. K., Rosario, M., & Mercado, H. (1996). Forest recovery in abandoned cattle pastures along an elevation gradient in Northeastern Puerto Rico. Biotropica, 28(4), 537–548.
Aide, T. M., Zimmerman, J. K., Pascarella, J. B., Rivera, L., & Mercado-Vega, H. (2000). Forest regeneration in a chronosequence of tropical abandoned pasture: implications for restoration ecology. Restoration Ecology, 8(4), 328–338.
Alday, J. G., Marrs, R. H., & Martínez-Ruiz, C. (2010). The importance of topography and climate on short-term revegetation of coal wastes in Spain. Ecological Engineering, 36(4), 579–585.
Alday, J. G., Pallavicini, Y., Marrs, R. H., & Martínez-Ruiz, C. (2011). Functional groups and dispersal strategies as guides for predicting vegetation dynamics on reclaimed mines. Plant Ecology, 212(11), 1759–1775.
Alday, J. G., Zaldívar, P., Torroba-Balmori, P., Fernández-Santos, B., & Martínez-Ruiz, C. (2016). Natural forest expansion on reclaimed coal mines in Northern Spain: the role of native shrubs as suitable microsites. Environmental Science and Pollution Research, 23(14), 13606–13616.
Bardgett, R. D., Bowman, W. D., Kaufmann, R., & Schmidt, S. K. (2005). A temporal approach to linking aboveground and belowground ecology. Trends in Ecology & Evolution, 20(11), 634–641.
Byrne, M., Stone, L., & Millar, M. A. (2011). Assessing genetic risk in revegetation. Journal of Applied Ecology, 48(6), 1365–1373.
Chazdon, R. L. (2003). Tropical forest recovery: legacies of human impact and natural disturbances. Perspectives in Plant Ecology, Evolution and Systematics, 6(1–2), 51–71.
Colwell, R. K., & Elsensohn, J. E. (2013). EstimateS turns 20: Statistical estimation of species richness and shared species from samples, with non-parametric extrapolation. Ecography, 37(2014), 609–613.
De Kovel, C. F., Wilms, Y. J. O., & Berendse, F. (2000). Carbon and nitrogen in soil and vegetation at sites differing in successional age. Plant Ecology, 149(2000), 43–50.
DeWalt, S. J., Maliakal, S. K., & Denslow, J. S. (2003). Changes in vegetation structure and composition along a tropical forest chronosequence: implications for wildlife. Forest Ecology and Management, 182(1–3), 139–151.
Díaz, W. A., & Elcoro, S. (2009). Plantas colonizadoras en áreas perturbadas por la minería en el Estado Bolívar, Venezuela. Acta Botánica Venezuelica, 32(2), 453–466.
Forero, L. A., & Finegan, B. (2002). Efectos de borde en la vegetación de remanentes de bosque muy húmedo tropical en el norte de Costa Rica, y sus implicaciones para el manejo y la conservación. Revista Forestal Centroamericana, 38(2002), 39–43.
Gentry, A. H. (1996). A field guide to the families and genera of woody plants of North West South America: (Colombia, Ecuador, Perú): with supplementary notes on herbaceous taxa. Conservation International.
Gómez, J. M., García, D., & Zamora, R. (2003). Impact of vertebrate acorn-and seedling-predators on a Mediterranean Quercus pyrenaica forest. Forest Ecology and Management, 180(1–3), 125–134.
González-Alday, J., Marrs, R. H., & Martínez-Ruiz, C. (2009). Soil seed bank formation during early revegetation after hydroseeding in reclaimed coal wastes. Ecological Engineering, 35(7), 1062–1069.
Goosem, M., Paz, C., Fensham, R., Preece, N., Goosem, S., & Laurance, S. G. (2016). Forest age and isolation affect the rate of recovery of plant species diversity and community composition in secondary rain forests in tropical Australia. Journal of Vegetation Science, 27(3), 504–514.
Guerra-Martínez, F., García-Romero, A., Martínez-Morales, M. Á., & López-García, J. (2021). Resiliencia ecológica del bosque tropical seco: recuperación de su estructura, composición y diversidad en Tehuantepec, Oaxaca. Revista Mexicana de Biodiversidad, 92(2021), 1–15.
Hardt, R. A., & Forman, R. T. (1989). Boundary form effects on woody colonization of reclaimed surface mines. Journal of Ecology, 70(5), 1252–1260.
Harper, K. A., Macdonald, S. E., Burton, P. J., Chen, J., Brosofske, K. D., Saunders, S. C., Euskirchen, E. S., Roberts, D. A., Jaiteh, M. S., & Esseen, P. A. (2005). Edge influence on forest structure and composition in fragmented landscapes. Conservation Biology, 19(3), 768–782.
Helsen, K., Hermy, M., & Honnay, O. (2013). Spatial isolation slows down directional plant functional group assembly in restored semi‐natural grasslands. Journal of Applied Ecology, 50(2), 404–413.
John, M. G. S., Bellingham, P. J., Walker, L. R., Orwin, K. H., Bonner, K. I., Dickie, I. A., Morse, C. W., Yeates, G. W., & Wardle, D. A. (2012). Loss of a dominant nitrogen‐fixing shrub in primary succession: consequences for plant and below‐ground communities. Journal of Ecology, 100(5), 1074–1084.
Kapos, V., Wandelli, E., Camargo, J. L., & Ganade, G. (1997). Edge-to-interior changes in environment and plant responses due to forest fragmentation in central Amazonia. En W. F. Laurence, & R. O. J. Bierregaard (Eds.), Tropical forest remnants ecology, management, and conservation of fragmented communities (pp. 33–43). The University Chicago Press.
Lara-Rodríguez, J. S., Tosi-Furtado, A., & Altimiras-Martin, A. (2020). Minería del platino y el oro en Chocó: pobreza, riqueza natural e informalidad (Platinum and Gold Mining in Chocó: Poverty, Natural Wealth and Informality). Revista de Economía Institucional, 22(42), 241–268.
López-Barrera, F. (2004). Estructura y función en bordes de bosques. Ecosistemas, 13(1), 67–77.
López-Barrera, F., Newton, A., & Manson, R. (2005). Edge effects in a tropical montane forest mosaic: Experimental tests of post-dispersal acorn removal. Ecological Restoration, 20(2005), 31–40.
Lovera, M., & Cuenca, G. (1996). Arbuscular mycorrhizal infection in Cyperaceae and Gramineae from natural, disturbed and restored savannas in La Gran Sabana, Venezuela. Mycorrhiza, 6(2), 111–118.
Magurran, A. E. (2004). Measuring biological diversity. Blackwell Publishing.
Magurran, A. E., & McGill, B. J. (2011). Biological diversity: frontiers in measurement and assessment. Oxford University Press.
Martínez-Ruiz, C., & Fernández-Santos, B. (2001). Papel de la hidrosiembra en la revegetación de escombreras mineras. Informes de la Construcción, 53(476), 27–37.
Martínez-Ruiz, C., & Fernández-Santos, B. (2005). Natural revegetation on topsoiled mining-spoils according to the exposure. Acta Oecologica, 28(3), 231–238.
Martínez-Ruiz, C., Fernández-Santos, B., & Gómez-Gutiérrez, J. M. (2001). Effects of substrate coarseness and exposure on plant succession in uranium-mining wastes. Plant Ecology, 155(2001), 79–89.
Martínez-Ruiz, C., Milder, A. I., López-Marcos, D., Zaldívar, P., & Fernández-Santos, B. (2021). Effect of the forest-mine boundary form on woody colonization and forest expansion in degraded ecosystems. Forests, 12(6), 773.
Martín-Sanz, R. C., Fernández-Santos, B., & Martínez-Ruiz, C. (2015). Early dynamics of natural revegetation on roadcuts of the Salamanca province (CW Spain). Ecological Engineering, 75(2015), 223–231.
Matlack, G. R. (1994). Vegetation dynamics of the forest edge trends in space and successional time. Journal of Ecology, 82(1), 113–123.
Milder, A. I., Fernández-Santos, B., & Martínez-Ruiz, C. (2008). Influencia de la forma del borde del bosque en la colonización de leñosas: aplicaciones en restauración de escombreras mineras. Cuadernos de la Sociedad Española de Ciencias Forestales, 28(2008), 259–264.
Milder, A. I., Fernández‐Santos, B., & Martínez‐Ruiz, C. (2013). Colonization patterns of woody species on lands mined for coal in Spain: preliminary insights for forest expansion. Land Degradation & Development, 24(1), 39–46.
Millar, M. A., Byrne, M., Nuberg, I. K., & Sedgley, M. (2012). High level of genetic contamination in remnant population of Acacia saligna from a genetically divergent planted stand. Restoration Ecology, 20, 260–267.
Mori, A. S., Osono, T., & Uchida, M. (2008). Changes in the structure and heterogeneity of vegetation and microsite environments with the chronosequence of primary succession on a glacier foreland in Ellesmere Island, high arctic Canada. Ecology Restoration, 23(2008), 363–370.
Mueller-Dombois, D., & Ellenberg, D. (1974). Aims and methods of vegetation ecology. Jhon Wiley & Sons.
Newmak, W. D. (2001). Tanzanian forest edge microclimate gradients: Dynamic patterns. Biotropica, 33(1), 2–11.
Oosterhoorn, M., & Kapelle, M. (2000). Vegetation structure and composition along an interior edge-exterior gradient in a Costa Rican montane cloud forest. Forest Ecology and Management, 126(3), 291–307.
Parmenter, R. R., MacMahon, J. A., Waaland, M. E., Steube, M. M., & Crisafulli, C. M. (1985). Reclamation of surface coal mines in western Wyoming for wildlife habitat. Reclamation and Revegetation Research, 4(2), 93–115.
Peña-Claros, M. (2003). Changes in forest structure and species composition during secondary forest succession in the Bolivian amazon. Biotropica, 35(4), 450–461.
Pérez-Ramos, I. M., Urbieta, I. R., Zavala, M. A., & Maranon, T. (2012). Ontogenetic conflicts and rank reversals in two mediterranean oak species: Implications for coexistence. Journal of Ecology, 100(2), 467–477.
Poveda-M, C., Rojas-P, C. A., Rudas-LI, A. & Rangel-Ch, J. O. (2004). El Chocó biogeográfico: ambiente físico. En J. O. Rangel-Ch (Ed.), Colombia diversidad biótica IV, El Chocó biogeográfico/Costa Pacífica (pp. 1–22). Universidad Nacional de Colombia, Conservación Internacional.
Prach, K., & Walker, L. R. (2019). Differences between primary and secondary plant succession among biomes of the world. Journal of Ecology, 107(2), 510–516.
Quinto, H., & Moreno, F. (2014). Diversidad florística arbórea y su relación con el suelo en un bosque pluvial tropical del Chocó biogeográfico. Revista Árvore, 38(6), 1123–1132.
R Core Team. (2012). R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. http://www.R-project.org/
Ramírez-Moreno, G., Klinger, W., & Valois-Cuesta, H. (2016). Lineamientos de manejo ecosistémico post-aprovechamiento minero en ambientes naturales del Chocó, Colombia–Protocolo. Instituto de Investigaciones Ambientales del Pacífico. Universidad Tecnológica del Chocó.
Ramírez-Moreno, G., Quinto, H., Vargas, L., & Rangel-Ch, J. O. (2019). Temporary effect of mining on breathing and on the physicochemical conditions of soil. Modern Environmental Science and Engineering, 5(9), 837–848.
Rangel-Ch, J. O. (2004). Colombia diversidad biótica IV: El Chocó biogeográfico/Costa Pacífica. Instituto de Ciencias Naturales, Universidad Nacional de Colombia.
Sabattini, J. A., & Sabattini, R. A. (2018). Sucesión vegetal y restauración ecológica. Revista Científica Agropecuaria, 22(1–2), 31–53.
Saunders, S. C., Chen, J., Drummer, T. D., & Crow, T. R. (1999). Modelling temperature gradients across edges over time in a managed landscape. Forest Ecology and Management, 117(1–3), 17–31.
Stinca, A., Chirico, G. B., Incerti, G., & Bonanomi, G. (2015). Regime shift by an exotic nitrogen-fixing shrub mediates plant facilitation in primary succession. Plos One, 10(4), e0123128.
The Angiosperm Phylogeny Group. (2009). An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Botanical Journal of the Linnean Society, 161(2), 105–121.
Titlyanova, A. A., & Mironycheva-Tokareva, N. P. (1990). Vegetation succession and biological turnover on coal-mining spoils. Journal of Vegetation Science, 1(5), 643–652.
Turner, M. G., Baker, W. L., Peterson, C. J., & Peet, R. K. (1998). Factors influencing succession: lessons from large, infrequent natural disturbances. Ecosystems, 1(1998), 511–523.
Valois-Cuesta, H., & Martínez-Ruiz, C. (2016). Vulnerabilidad de los bosques naturales en el Chocó biogeográfico colombiano: actividad minera y conservación de la biodiversidad. Bosque, 37(2), 295–305.
Valois-Cuesta, H., & Martínez-Ruiz, C. (2017). Especies vegetales colonizadoras de áreas perturbadas por la minería en bosques pluviales del Chocó, Colombia. Biota Colombiana, 18(1), 88–104.
Valois-Cuesta, H., Córdoba-Arias, J. A., & Rentería-Arriaga, E. (2016). Patrones de diversidad de plantas en un gradiente de baja elevación en el Chocó, Colombia, usando especies indicadoras (Rubiaceae). Revista Mexicana de Biodiversidad, 87(4), 1275–1282.
Valois-Cuesta, H., Martínez-Ruiz, C., & Urrutia-Rivas, Y. (2017). Formación del banco de semillas durante la revegetación temprana de áreas afectadas por la minería en un bosque pluvial tropical del Chocó, Colombia. Revista de Biología Tropical, 65(1), 393–404.
Walker, L. R., & del Moral, R. (2003). Primary succession and ecosystem rehabilitation. Cambridge University Press.
Walker, L. R., Clarkson, B. D., Silvester, W. B., & Clarkson, B. (2003). Colonization dynamics and facilitative impacts of a nitrogen-fixing shrub in primary succession. Journal of Vegetation Science, 14(2), 277–290.
Wang, B., Liu, G. B., Xue, S., & Zhu, B. (2011). Changes in soil physico-chemical and microbiological properties during natural succession on abandoned farmland in the Loess Plateau. Environmental Earth Sciences, 62(2011), 915–925.
Williams-Linera, G. (1990). Vegetation structure and environmental conditions of forest edges in Panama. Journal of Ecology, 78(2), 356–373.
Young, T. P. (2000). Restoration ecology and conservation biology. Biological Conservation, 92(1), 73–83.
Comments
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright (c) 2022 Revista de Biología Tropical