Revista de Biología Tropical ISSN Impreso: 0034-7744 ISSN electrónico: 2215-2075

Litterfall and nutrient transfer dynamics in a successional gradient of tropical dry forest in Colombia


biogeochemical cycles
plant succession
ecological indicators
forests recovery
key species
ciclos biogeoquímicos;
sucesión vegetal;
indicadores ecológicos;
recuperación de bosques;
especies clave

How to Cite

Montañez-S, A. ., Avella-M, A., & López Camacho, R. (2023). Litterfall and nutrient transfer dynamics in a successional gradient of tropical dry forest in Colombia. Revista De Biología Tropical, 71(1), e52278.


Introduction: The litterfall production, foliar nutrient dynamics and decomposition are essential to maintain nutrient cycling, soil fertility, and carbon regulation in terrestrial ecosystems. With several studies addressing the variation of these processes, their dynamics in tropical dry forests (TDFs) remain unclear, due to its complex interaction of biotic and abiotic factors. Objective: To evaluate litterfall, nutrient potential return and use efficiency, and decomposition variation in a TDF successional gradient in Tolima, Colombia. Methods: We quantified litterfall from November 2017 to October 2019 in 12 plots distributed in four successional stages: initial, early, intermediate, and late forests. We identified key tree species in foliar litter production and characterized the foliar decomposition of these species. At the community level, we quantified the C, N and P potential return, the N and P use efficiency, and the C:N and N:P ratio. Subsequently, we analyze relationships between vegetation characteristics and some soil chemical properties with these ecological processes. Results: We found that total litterfall in late forests (8.46 Mg ha-1 y-1) was double that found in initial forests (4.45 Mg ha-1 y-1). Decomposition was higher in initial (k = 1.28) compared to intermediate (k = 0.97) and late forests (k = 0.87). The nutrient potential return didn’t change along succession, but it did show differences between study sites. The structural development and species richness favored litterfall, while soil chemical conditions influenced nutrient returns and decomposition. Conclusions: TDFs could recover key ecosystem function related to litterfall and nutrient dynamics after disturbances cessation; however, the soil quality is fundamental in return and release of nutrients.


Aerts, R., & Chapin, F. S. (1999). The mineral nutrition of wild plants revisited: A re-evaluation of processes and patterns. Advances in Ecological Research, 30, 1–67.

Aryal, D. R., De Jong, H. J. B., Ochoa-Gaona, S., Mendoza-Vega, J., & Esparza-Olguin, L. (2015). Successional and seasonal variation in litterfall and associated nutrient transfer in semi-evergreen tropical forests of SE Mexico. Nutrient Cycling in Agroecosystems, 103(1), 45–60.

Barreto da Silva, W., Périco, E., Dalzochio, M., Santos, M., & Cajaiba, R. (2018). Are litterfall and litter decomposition processes indicators of forest regeneration in the neotropics? Insights from a case study in the Brazilian Amazon. Forest Ecology and Management, 429, 189–197.

Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1).

Becknell, J. M., & Powers, J. S. (2014). Stand age and soils as drivers of plant functional traits and aboveground biomass in secondary tropical dry forest. Canadian Journal of Forest Research, 44(6), 604–613.

Campo, J. (2016). Shift from ecosystem P to N limitation at precipitation gradient in tropical dry forests at Yucatan, Mexico. Environmental Research Letters, 11(9), 1–11.

Campo, J., Maass, M., Jaramillo, V. J., Martinez-Yrizar, A., & Sarukhán, J. (2001). Phosphorus cycling in a Mexican tropical dry forest ecosystem. Biogeochemistry, 53, 161–179.

Campo, J., & Merino, A. (2019). Linking organic P dynamics in tropical dry forests to changes in rainfall regime: Evidences of the Yucatan Peninsula. Forest Ecology and Management, 438, 75–85.

Castellanos-Barliza, J., Blanco-Rodríguez, O., & León-Peláez, J. (2019). Planted forests for open coal mine spoils rehabilitation in Colombian drylands: Contributions of fine litterfall through an age chronosequence. Ecological Engineering, 138, 180–187.

Castellanos-Barliza, J., León-Peláez, J., Armenta-Martínez, R., Barranco-Pérez, W., & Caicedo-Ruíz, W. (2018). Contributions of organic matter and nutrients via leaf litter in an urban tropical dry forest fragment. Revista de Biología Tropical, 66(2), 571–585.

Castellanos-Barliza, J., León-Peláez, J., & Campo, J. (2018). Recovery of biogeochemical processes in restored tropical dry forest on a coal mine spoil in La Guajira, Colombia. Land Degradation and Development, 29(9), 3174–3183.

Celentano, D., Zahawi, R., Finegan, B., Casanoves, F., Cole, R., & Holl, K. (2011). Restauración ecológica de bosques tropicales en Costa Rica: efecto de diferentes modelos en la producción, acumulación y descomposición de hojarasca. Revista de Biologia Tropical, 59(3), 1–14.

Chazdon, R. (2014). Second growth:The promise of tropical forest regeneration in an age of deforestation. The University of Chicago Press.

Clark, D. A., Brown, S., Kicklighter, D., Chambers, J., Thomlinson, J., & Ni, J. (2001). Measuring Net Primary Production in Forests: Concepts and Field Methods. Ecological Applications, 11(2), 356–370.

Coleman, D. C., Callaham, M. A., & Crossley, D. A. (2018). Decomposition and nutrient cycling. In D. Coleman, M. A. Callaham, & D. A. Crossley (Eds.), Fundamentals of Soil Ecology (pp. 173–211). Academic Press.

Conti, G., & Díaz, S. (2013). Plant functional diversity and carbon storage - an empirical test in semi-arid forest ecosystems. Journal of Ecology, 101(1), 18–28.

Cornwell, W., Cornelissen, J. H., Amatangelo, K., Dorrepaal, E., Eviner, V., Godoy, O., Hobbie, S., Hoorens, B., Kurokawa, H., Pérez-Harguindeguy, N., Quested, H., Santiago, L., Wardle, D., Wright, I., Aerts, R., Allison, S., Van Bodegom, P., Brovkin, V., Chatain, A., … Westoby, M. (2008). Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecology Letters, 11(10), 1065–1071.

Fernandez-Mendez, F., Melo, O., Alvarez, E., Perez, U., & Lozano, A. (2014). Status of knowledge, Conservation and Management of Tropical Dry Forest in the Magdalena River Valley, Colombia. In A. Sanchez-Azofeifa, J. Powers, G. W. Fernandes, & M. Quesada (Eds.), Tropical Dry Forests in the Americas (pp. 35–54). CRC Press.

Finegan, B., Peña-Claros, M., de Oliveira, A., Ascarrunz, N., Bret-Harte, M., Carreño-Rocabado, G., Casanoves, F., Díaz, S., Eguiguren-Velepucha, P., Fernandez, F., Licona, J., Lorenzo, L., Salgado-Negret, B., Vaz, M., & Poorter, L. (2015). Does functional trait diversity predict above-ground biomass and productivity of tropical forests? Testing three alternative hypotheses. Journal of Ecology, 103(1), 191–201.

García Villalobos, D. (2020). Potencial de regeneración del bosque seco tropical a lo largo de un gradiente sucesional en el valle del Río Magdalena. Universidad Distrital Francisco José de Caldas, Colombia.

Gei, M., & Powers, J. (2014). Nutrient cycling in tropical dry forests. In A. Sanchez-Azofeifa, J. Powers, G. Fernandes, & M. Quesada (Eds.), Tropical Dry Forests in the Americas (pp. 141–154). CRC Press.

González-M, R., Norden, N., Posada, J., Pizano, C., García, H., Idárraga-Piedrahita, A., López-Camacho, R., Nieto, J., Rodríguez-M, G., Torres, A., Castaño-Naranjo, A., Jurado, R., Franke-Ante, R., Galindo-T, R., Hernández, E., Barbosa, A., & Salgado-Negret, B. (2019). Climate severity and land-cover transformation determine plant community attributes in Colombian dry forests. Biotropica, 51(6), 826–837.

González-Rodríguez, H., Domínguez-Gómez, T. G., Cantú-Silva, I., Gómez-Meza, M. V., Ramírez-Lozano, R. G., Pando-Moreno, M., & Fernández, C. J. (2011). Litterfall deposition and leaf litter nutrient return in different locations at Northeastern Mexico. Plant Ecology, 212(10), 1747–1757.

Graca, M. A. S., Barlocher, F., & Mark, G. O. (2005). Methods to study litter decomposition. A practical guide. Springer.

Grime, J. (1998). Benefits of plant diversity to ecosystems: immediate fillter and founder effects. Journal of Ecology, 86, 902–910.

Honorio, E. N., & Baker, T. (2010). Manual para el monitoreo del ciclo del carbono en bosques amazónicos. Instituto de Investigaciones de la Amazonia Peruana, Universidad de Leeds, United Kingdom.

Huang, Y., Ma, Y., Zhao, K., Niklaus, P. A., Schmid, B., & He, J. (2017). Positive effects of tree species diversity on litterfall quantity and quality along a secondary successional chronosequence in a subtropical forest. Journal of Plant Ecology, 10(1), 28–35.

Hulshof, C., Martinez-Yrizar, A., Burquez, A., & Enquist, B. (2014). Plant functional trait variation in tropical dry forests: A review and synthesis. In A. Sanchez-Azofeifa, J. Powers, G. Fernandes, & M. Quesada (Eds.), Tropical Dry Forests in the Americas (pp. 133–144). CRC Press.

IGAC. (2004). Estudio general de suelos y zonificación de tierras. Departamento del Tolima. Escala 1: 100000. IGAC.

Lamb, D., & Gilmour, D. (2003). Rehabilitation and Restoration of Degraded Forests. IUCN.

Lopezaraiza-Mikel, M., Quesada, M., Daniel, L., & Cabadilla, A. (2014). Phenological patterns of tropical dry forest along latitudinal and successional gradients in the Neotropics. In A. Sanchez-Azofeifa, J. Powers, G. Fernandes, & M. Quesada (Eds.), Tropical Dry Forests in the Americas (pp. 102–126). CRC Press.

Meeds, J. A., Marty Kranabetter, J., Zigg, I., Dunn, D., Miros, F., Shipley, P., & Jones, M. D. (2021). Phosphorus deficiencies invoke optimal allocation of exoenzymes by ectomycorrhizas. ISME Journal, 15(5), 1478–1489.

Meister, K., Ashton, S., Craven, D., & Griscom, H. (2012). Carbon dynamics of tropical forests. In M. S. Ashton, M. L. Tyrrell, D. Spalding, & B. Gentry (Eds.), Managing Forest Carbon in a Changing Climate (pp. 51–75). Springer Science & Business Media.

Morffi-Mestre, H., Ángeles-Pérez, G., Powers, J. S., Andrade, J., Ruiz, A. H., May-Pat, F., Chi-May, F., & Dupuy, J, M. (2020). Multiple factors influence seasonal and interannual litterfall production in a tropical dry forest in mexico. Forests, 11(12), 1–23.

Murphy, P., & Lugo, A. (1986). Ecology of tropical dry forest. Annual Review of Ecology Evolution and Systematics, 17, 67–88.

Ostertag, R., Marín-Spiotta, E., Silver, W. L., & Schulten, J. (2008). Litterfall and decomposition in relation to soil carbon pools along a secondary forest chronosequence in Puerto Rico. Ecosystems, 11(5), 701–714.

Pizano, C., & García, H. (2014). El Bosque Seco Tropical en Colombia. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Colombia.

Polania, K. (2019). Biomasa aérea en estados sucesionales del bosque seco tropical en el norte del Tolima, Colombia. Universidad Distrital Francisco José de Caldas, Colombia.

Portillo-Quintero, C., & Sánchez-Azofeifa, G. (2010). Extent and conservation of tropical dry forests in the Americas. Biological Conservation, 143(1), 144–155.

Quesada, M., Sanchez-Azofeifa, G., Alvarez-Añorve, M., Stoner, K. E., Avila-Cabadilla, L., Calvo-Alvarado, J., Castillo, A., Espírito-Santo, M. M., Fagundes, M., Fernandes, G. W., Gamon, J., Lopezaraiza-Mikel, M., Lawrence, D., Cerdeira, L., Powers, J. S., Neves, F. de S., Rosas-Guerrero, V., Sayago, R., & Sanchez-Montoya, G. (2009). Succession and management of tropical dry forests in the Americas: Review and new perspectives. Forest Ecology and Management, 258, 1014–1024.

R Core Team. (2020). R: A language and environment for statistical computing (Software). R Foundation for Statistical Computing. Vienna, Austria.

Read, L., & Lawrence, D. (2003). Litter nutrient dynamics during succession in dry tropical forests of the Yucatan: regional and seasonal effects. Ecosystems, 6(8), 747–761.

Restrepo, M. F., Florez, C. P., Osorio, N. W., & León, J. D. (2013). Passive and active restoration strategies to activate soil biogeochemical nutrient cycles in a degraded tropical dry land. ISRN Soil Science, 3, 1–6.

Ribeiro, J., Pereira, M., Gadioli, J., & Raposo de Almeida, J. (2020). Litterfall dynamics and nutrient cycling in an experimental plantation of peach palm (Bactris gasipaes Kunth). Floresta e Ambiente, 27(2), 1–9.

Salgado-Negret, B., Rodríguez-Buriticá, S., & Gonzalez-M, R. (2017). Evaluación de la biodiversidad y los servicios ecosistémicos del bosque seco tropical. Instituto de Investigación en Recursos Biológicos Alexander von Humboldt, Colombia.

Sánchez-Silva, S., De Jong, B. H. J., Aryal, D. R., Huerta-lwanga, E., & Mendoza-Vega, J. (2018). Trends in leaf traits , litter dynamics and associated nutrient cycling along a secondary successional chronosequence of semi-evergreen tropical forest in South-Eastern Mexico. Journal of Tropical Ecology, 34, 364–377.

Saynes, V., Hidalgo, C., Etchevers, J. D., & Campo, J. (2005). Soil C and N dynamics in primary and secondary seasonally dry tropical forests in Mexico. Applied Soil Ecology, 29(3), 282–289.

Schilling, E. M., Waring, B. G., Schilling, J. S., & Powers, J. S. (2016). Forest composition modifies litter dynamics and decomposition in regenerating tropical dry forest. Oecologia, 182(1), 287–297.

Souza, S., Veloso, M. D., Espírito-Santo, M., Silva, J., & Sánchez-Azofeifa, A. (2019). Litterfall dynamics along a successional gradient in a Brazilian tropical dry forest. Forest Ecosystems, 6(35), 1–12.

Steidinger, B. S., Crowther, T. W., Liang, J., Van Nuland, M. E., Werner, G. D. A., Reich, P. B., Nabuurs, G., De-Miguel, S., Zhou, M., Picard, N., Herault, B., Zhao, X., Zhang, C., Routh, D., & Peay, K. G. (2019). Climatic controls of decomposition drive the global biogeography of forest-tree symbioses. Nature, 569(7756), 404–408.

Valdespino, P., Romualdo, R., Cadenazzi, L., & Campo, J. (2009). Phosphorus cycling in primary and secondary seasonally dry tropical forests in Mexico. Annals of Forest Science, 66(1), 107.

Villalobos, S. de C., González-Carcacía, J., Rodríguez, J., & Nassar, J. (2014). Interspecific and Interannual variation in foliar phenological patterns in a successional mosaic of a dry forest in the central llanos of Venezuela. In A. Sanchez-Azofeifa, J. Powers, G. W. Fernandes, & M. Quesada (Eds.), Tropical Dry Forests in the Americas (pp. 301–324). CRC Press.

Vitousek, P. (1984). Litterfall, nutrient cycling, and nutrient limitation in tropical forests. Ecology, 65(1), 285–298.

Vitousek, P. M., & Sanford, R. L. (1986). Nutrient cycling in moist tropical forest. Ecology, 17, 137–167.

Waring, B. G., De Guzman, M. E., Du, D. V., Dupuy, J. M., Gei, M., Gutknecht, J., Hulshof, C., Jelinski, N., Margenot, A. J., Medvigy, D., Pizano, C., Salgado-Negret, B., Schwartz, N. B., Trierweiler, A. M., Van Bloem, S. J., Vargas G., G., & Powers, J. (2021). Soil biogeochemistry across Central and South American tropical dry forests. Ecological Monographs, 91(3), e10453.

Xuluc-Tolosa, F., Vester, H. F., Ramírez-Marcial, N., Castellanos-Albores, J., & Lawrence, D. (2003). Leaf litter decomposition of tree species in three successional phases of tropical dry secondary forest in Campeche, Mexico. Forest Ecology and Management, 174(1–3), 401–412.


Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2023 Revista de Biología Tropical


Download data is not yet available.