Abstract
Introduction: Cattleya crispa is an ornamental epiphytic orchid with geographic distribution restricted to the Brazilian Atlantic Forest. Due to predatory extractivism and human-induced habitat loss, this species appears on the Red List of Brazilian Flora. Objective: To characterize morpho-anatomical aspects regarding germination and post-seminal development from C. crispa seeds; as well as studying the effect of cryopreservation on these seeds. Methods: We used light microscopy and electron microscopy to describe the microstructure of a 100 ripe seeds. We evaluated seed viability, seed germination, survival rate and protocorm weight in cryopreserved and non-cryopreserved material, with four replicas per treatment using 20 mg of plant material. Results: The seeds are fusiform, whitish yellow with a length from 700 to 900 µm and a water content of 5 %. Germination began seven days after sowing, the formation of the globular protocorm at 30 days and the formation of the seedling occurred 150 days. The persistent seed coat can compress the protocorm and cause it to collapse. The cryopreserved seeds presented 87.15 % viability, 78.32 % germination, 8.48 % survival and protocorms with 104.27 mg five months after sowing. Data wasn’t different to non-cryopreserved seeds. Conclusions: The cryocapability of the seeds shows that cryopreservation can be used for long-term conservation. The results of this work contribute to the overall biology of C. crispa and to the propagation and storage of genetic material for conservation purposes.
Objective: To characterize morpho-anatomical aspects regarding germination and initial development from C. crispa seeds; as well as studying the effect of cryopreservation on these seeds.
Methods: Mature capsules of C. crispa were collected from the ex-situ conservation collection of the Orquidário Frederico Carlos Hoehne - Institute of Botany (São Paulo-Brazil). We used light microscopy, scanning electron microscopy and transmission electron microscopy. Seed viability (%), seed germination (%), survival rate (%) and protocorms weight (mg) were evaluated.
Results: Our analyses showed that the globular embryo has a homogeneously early germination that occurs by the 7th day. The germinating protocorm shows bipolarity, with shoot apex and basal region. The embryo is composed mostly of lipid and protein bodies and contains a few small grains of starch. Scanning electron microscopy images revealed a persistent seed coat that does not influence the onset of germination, however, can compress the protocorm and lead to its collapse. The initial water content of the seeds was 5 %. Seeds submitted to cryopreservation resulted in a high germination rate (81.14 %). However, the survival rate of non-cryopreserved (8.48 %) and cryopreserved (11.12 %) protocorms, evaluated five months after sowing, was reduced.
Conclusions: The cryocapability of the seeds shows that cryopreservation can be used for long-term conservation. The results of this work contribute to the overall biology of C. crispa and to the propagation and storage of genetic material for conservation purposes.
References
Abraham, S., Augustine, J., & Thomas, T. D. (2012). Asymbiotic seed germination and in vitro conservation of Coelogyne nervosa A. Rich. an endemic orchid to Western Ghats. Physiology and Molecular Biology of Plants, 18(3), 245–251.
Arditti, J. (1967). Factors affecting the germination of orchid seeds. The Botanical Review, 33(1), 1–97.
Barthlott, W., Große-Veldmann, B., & Korotkova, N. (2014). Orchid seed diversity: A scanning electron microscopy survey. In N. J. Turland (Ed.), Englera (No. 32, pp. 8–24). Botanischer Garten und Botanisches Museum.
Bazzicalupo, M., Calevo, J., Adamo, M., Giovannini, A., Copetta, A., & Cornara, L. (2021). Seed micromorphology, in vitro germination, and early-stage seedling morphological traits of Cattleya purpurata (Lindl. & Paxton) Van den Berg. Horticulturae, 7(11), 480.
Benelli, C. (2021). Plant cryopreservation: a look at the present and the future. Plants, 10(12), 2744.
CNCFlora (2022). Hadrolaelia crispa in Lista Vermelha da flora brasileira versão 2012.2 Centro Nacional de Conservação da Flora. http://cncflora.jbrj.gov.br/portal/pt-br/profile/Hadrolaelia%20crispa
Corredor-Prado, J. P., Schmidt, E. C., Steinmacher, D. A., Guerra, M. P., Bouzon, Z. L., Dal Vesco, L. L., & Pescador, R. (2014). Seed morphology of Vriesea friburgensis var. paludosa L.B. Sm. (Bromeliaceae). Hoehnea, 41, 553–562.
Custódio, C. C., Marks, T. R., Pritchard, H. W., Hosomi, S. T., & Machado-Neto, N. B. (2016). Improved tetrazolium viability testing in orchid seeds with a thick carapace (Dactylorhiza fuchsii) or dark seed coat (Vanda curvifolia). Seed Science Technology, 44(1), 177–188.
Dalzotto, C. A., & Lallana, V. H. (2015). Effect of testa in vitro germination of Bipinnula pennicillata (Rchb. F.) Sisternas & Salazar (Orchidaceae). Investigación Agraria, 17(2), 116–121.
Diantina, S., Mcgill, C., Millner, J., Nadarajan, J., Pritchard, H. W., & Mccormick, A. C. (2020). Comparative Seed Morphology of Tropical and Temperate Orchid Species with Different Growth Habits. Plants, 9(2), 161.
Dolce, N. R., Medina, R. D., Terada, G., González-Arnao, M. T., & Flachsland, E. A. (2020). In vitro propagation and germplasm conservation of wild orchids from South America. In S. Khasim, S. Hegde, M. González-Arnao, & K. Thammasiri (Eds), Orchid Biology: Recent Trends & Challenges (pp. 37–94). Springer.
Engelmann, F. (2011). Use of biotechnologies for the conservation of plant biodiversity. In Vitro Cellular and Developmental Biology- Plant, 47, 5–16.
Feder, N., & O’brien, T. P. (1968). Plant microthecnique: some principles and new methods. American Journal of Botany, 55, 123–142.
Galdiano, Jr. R. F., Vendrame, W. A., Moretto, C., Faria, R. T., & Lemos, E. G. M. (2017). Seed cryopreservation, in vitro propagation and ex vitro growth of' Cattleya walkeriana Gardner, a vulnerable ornamental orchid. Australian Journal of Crop Science, 11(4), 485.
Gallo, F. R., Souza, L. A., Milaneze-Gutierre, M. A., & Almeida, O. J. G. (2016). Seed structure and in vitro seedling development of certain Laeliinae species (Orchidaceae). Revista Mexicana de Biodiversidad, 87, 68–73.
Gamarra, R., Ortuñez, E., Galan, C. P., & Merencio, A. (2018). Seed micromorphology of Orchidaceae in the Gulf of Guinea (West Tropical Africa). Plant Systematics and Evolution, 304, 665–677.
Hirano, T., Godo, T., Mii, M., & Ishikawa, K. (2005). Cryopreservation of immature seeds of Bletilla striata by vitrification. Plant Cell Reports, 23, 534–539.
Hoang, N. H., Kane, M. E., Radcliffe, E. N., Zettler, L. W., & Richardson, L. W. (2016). Comparative seed germination and seedling development of the ghost orchid, Dendrophylax lindenii (Orchidaceae), and molecular identification of its mycorrhizal fungus from South Florida. Annals of Botany, 119(3), 379–393.
Hosomi, S. T., Custódio, C. C., Seaton, P. T., Marks, T. R., & Machado-Neto, N. B. (2012). Improved assessment of viability and germination of Cattleya (Orchidaceae) seeds following storage. In Vitro Cellular and Developmental Biology- Plant, 48(1), 127–136.
Hossain, M. M., Sharma, M., Silva, J. A. T., & Pathak, P. (2010). Seed germination and tissue culture of Cymbidium giganteum Wall. ex Lindl. Scientia Horticulturae, 123(4), 479–487.
ISTA. (1985). International rules for testing seed. Seed Science and Technology, 13(2), 300–520.
Kaur, S. (2019). Cryopreservation of Orchids-A Review. Recent Patents on Biotechnology, 13(2), 114–123.
Kulus, D., & Zalewska, M. (2014). Cryopreservation as a tool used in long-term storage of ornamental species-a review. Scientia Horticulturae, 168, 88–107.
Martelo-Solorzano, A. M., Lidueña-Pérez, K. I., & Corredor-Prado, J. P. (2022). Seed’s morpho-anatomy and post-seminal development of Bromeliaceae from tropical dry forest. Rodriguesia, 73, e02122020.
Merritt, D. J., Hay, F. R., Swarts, N. D., Sommerville, K. D., & Dixon, K. W. (2014). Ex situ conservation and cryopreservation of orchid germplasm. International Journal of Plant Sciences, 175(1), 46–58.
Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth on bioassays with tobacco tissue cultures. Physiologia Plantarum, 15, 495–497.
Nikishina, T. V., Popova, E. V., Vakhrameeva, M. G., Varlyginab, T. I., Kolomeitsevac, G. L., Burovd, A. V., Popovicha, E. A., Shirokovd, A. I., Shumilova, V. Y. U., & Popo, A. S. (2007). Cryopreservation of seeds and protocorms of rare temperate orchids. Russian Journal of Plant Physiology, 54(1), 121–127.
O’Brien, T. P., Feder, N., & Mccully, M. E. (1964). Polychromatic staining of plant cell walls by toluidine blue O. Protoplasma, 59, 368–373.
Penfield, S., Graham, S., & Graham, I. A. (2005). Storage reserve mobilization in germinating oil seeds: Arabidopsis as a model system. Biochemical Society Transactions, 33(2), 380–383.
Popova, E., Kim, H. H., Saxena, P. K., Engelmann, F., & Pritchard, H. W. (2016). Frozen beauty: The cryobiotechnology of orchid diversity. Biotechnology Advances, 34(4), 380–403.
Ramudu, J., Khasim, S. M., & Ramesh, G. (2020). Orchid seed ultrastructure: Ecological and taxonomic implications with reference to Epidendroideae (Orchidaceae). In S. Khasim, S. Hegde, M. González-Arnao, & K. Thammasiri (Eds), Orchid Biology: Recent Trends & Challenges (pp. 281–302). Springer.
Salazar-Mercado, S. A., & Vega-Contreras, N. A. (2017). Asymbiotic seed germination and in vitro propagation of Cattleya trianae Linden & Reichb. f. (Orchidaceae). Acta Agronómica, 66(4), 544–548.
Salazar-Mercado, S. A., Quintero-Caleño, J. D., & Rojas-Suárez, J. P. (2020). Optimization of the tetrazolium test in three species of orchids of the Andean Forest. Australian Journal of Crop Science, 14(5), 822–830.
Schvambach, M. I., dos Santos, C. M. R., de Souza, P. F., Cabral, N. N., Suzuki, R. M., & Pescador, R. (2022). Anatomical and histochemical characterization of seeds of Cattleya intermedia subjected to different storage conditions. Rodriguésia, 73, e01632021.
Silva, S. S. S., Souza, E. H., Souza, F. V. D., Max, D. A. S., Rossi, M. L., & Costa, M. A. P. C. (2021). Post-seminal development and cryopreservation of endemic or endangered bromeliads. Anais da Academia Brasileira de Ciencias, 93, e20191133.
UNEP-WCMC. (2022). Checklist of CITES species. CITES Secretariat, Geneva, Switzerland, and UNEP-WCMC, Cambridge, United Kingdom. http://checklist.cites.org
Van Den Berg, C. (2020). Cattleya in Flora e Funga do Brasil. Jardim Botânico do Rio de Janeiro. https://floradobrasil.jbrj.gov.br/FB65081
Vettorazzi, R. G., Carvalho, V. S., Teixeira, M. C., Campostrini, E., Cunha, M., Matos, E. M., & Viccini, L. F. (2019). Cryopreservation of immature and mature seeds of Brazilian orchids of the genus Cattleya. Scientia Horticulturae, 256, 108603.
Yeung, E. C. (2017). A perspective on orchid seed and protocorm development. Botanical Studies, 58(1), 33.
Zeng, S., Zhang, Y., Teixeira da Silva, J. A., Wu, K., Zhang, J., & Duan, J. (2014). Seed biology and in vitro seed germination of Cypripedium. Critical Reviews in Biotechnology, 34(4), 358–371.
Comments
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright (c) 2023 Revista de Biología Tropical