Revista de Biología Tropical ISSN Impreso: 0034-7744 ISSN electrónico: 2215-2075

OAI: https://revistas.ucr.ac.cr/index.php/rbt/oai
Impact of Collared Peccaries Dycotiles tajacu (Artiodactyla: Tayassuidae) on understory vegetation in the tropical rainforest of the Nogal-La Selva Biological Corridor, Costa Rica
PDF
HTML
EPUB

How to Cite

Osorto Nuñez, M. H., Alfaro Alvarado, L. D. ., Chinchilla Romero, F., & Guimarães Rodrigues3, F. (2024). Impact of Collared Peccaries Dycotiles tajacu (Artiodactyla: Tayassuidae) on understory vegetation in the tropical rainforest of the Nogal-La Selva Biological Corridor, Costa Rica. Revista De Biología Tropical, 72(1), e53238. https://doi.org/10.15517/rev.biol.trop.v72i1.53238

Abstract

Introduction: Evidence suggests that herbivores, such as peccaries, shape vegetation structure and diversity through predation, trampling, dispersal, and rooting behavior. Objective: To evaluate the impact of peccaries (Dycotiles tajacu) on the understory vegetation of the tropical rainforest in the Nogal-La Selva Local Biological Corridor, Costa Rica, comparing a site with the absence of peccaries to another with the presence of these animals. Methodology: From June to November 2021, 20 experimental exclusions and 20 free access plots, each measuring 2 m2 were used to quantify herbivory, the number of leaf blades, damaged leaves, healthy leaves, sapling height, and fallen biomass at both sites. Results: A higher sapling density was found in the Nogal Reserve, but a lower sapling diversity, while in La Selva there was a higher sapling diversity, but a lower density of seedlings. Herbivory and sapling height in La Selva exceeded those in Nogal. The exclusion of peccaries reduced seedling damage but did not affect the dynamics of fallen biomass. Conclusion: For the design, implementation, and evaluation of the effectiveness of biological corridors, it is crucial to consider plant-animal interactions to enhance the flow of ecological processes through functional and structural connectivity, analyzed from interactions such as those presented in this paper.

https://doi.org/10.15517/rev.biol.trop..v72i1.53238
PDF
HTML
EPUB

References

Armstrong, A. H., Huth, A., Osmanoglu, B., Sun, G., Ranson, K. J., & Fischer, R. (2020). A multi-scaled analysis of forest structure using individual-based modeling in a Costa Rican rainforest. Ecological Modelling, 433, 109226.

Arroyo-Arce, S., Berrondo, L., Canto, Y., Carrillo, N., Carrillo, V. G., Loaiza, C., Méndez, M., Rivera, D., & Unda, K. (2013). Uso de dos tipos de bosque por saínos (Pecari tajacu) en estación “La Selva”, Costa Rica. Cultura Científica, 11, 32–39.

Arteaga, L. L. (2006). Crecimiento y herbivoría de plántulas de Cedrela odorata (Meliaceae) comparando un área abierta y otras bajo regeneración natural en la Estación Biológica Tunquini. Ecología en Bolivia, 41(2), 130–137.

Augspurger, C. K. (1984). Light Requirements of Neotropical Tree Seedlings: A Comparative Study of Growth and Survival. The Journal of Ecology, 72(3), 777–795.

Avalos, G., Cambronero, M., & Vargas, O. (2016). Quantification of browsing damage to the stilt root cone of Socratea exorrhiza (Arecaceae) by Collared Peccaries (Pecari tajacu, Artiodactyla: Tayassuidae) at La Selva, Costa Rica. Brenesia, 85-86, 30–37.

Bartlett, M. S. (1951). The effect of standardization on a χ2 approximation in factor analysis. Biometrika, 38(3-4), 337–344.

Beck, H. (2005). Seed predation and dispersal by peccaries throughout the neotropics and its consequences: a review and synthesis. In P. M. Forget, J. E. Lambert, P. E. Hulme, & S. B. Vander Wall (Eds.), Seed fate: predation, dispersal and seedling establishment (pp. 77–115). CABI.

Beck, H., Thebpanya, P., & Filiaggi, M. (2010). Do Neotropical peccary species (Tayassuidae) function as ecosystem engineers for anurans? Journal of Tropical Ecology, 26(4), 407–414.

Belovsky, G. E., & Slade, J. B. (2000). Insect herbivory accelerates nutrient cycling and increases plant production. Proceedings of the National Academy of Sciences, 97(26), 14412–14417. https://doi.org/10.1073/PNAS.250483797

Borer, E. T., Seabloom, E. W., Shurin, J. B., Anderson, K. E., Blanchette, C. A., Broitman, B., Cooper, S. D., & Halpern, B. S. (2005). What determines the strength of a trophic cascade? Ecology, 86(2), 528–537.

Bullied, J. W., van Acker, R. C., & Bullock, P. R. (2012). Review: Microsite characteristics influencing weed seedling recruitment and implications for recruitment modeling. Canadian Journal of Plant Science, 92(4), 627–650.

Camargo-Sanabria, A. A., Mendoza, E., Guevara, R., Martínez-Ramos, M., & Dirzo, R. (2015). Experimental defaunation of terrestrial mammalian herbivores alters tropical rainforest understory diversity. Proceedings of the Royal Society B: Biological Sciences, 282(1800), 1–6.

Cano, A., & Stevenson, P. R. (2009). Diversidad y composición florística de tres tipos de bosque en la Estación Biológica Caparú, Vaupés. Colombia Forestal, 12(1), 63–80.

Ceccon, E., & Hernández, P. (2009). Seed rain dynamics following disturbance exclusion in a secondary tropical dry forest in Morelos, Mexico. Revista de Biología Tropical, 57(1-2), 257–269.

Chavarria-Bolaños, N., Tapia-Fernandez, A., Soto, G., & Virginio-Filho, E. (2012). Efecto de diferentes sistemas de manejo sobre la calidad del suelo, en fincas cafetaleras de la zona de Turrialba y Orosi. InterSedes, 8, 85–105.

Clark, D. B., & Clark, D. A. (1989). The Role of Physical Damage in the Seedling Mortality Regime of a Neotropical Rain. Oikos, 55(2), 225–230.

Clark, D. A., Clark, D. B., & Oberbauer, S. F. (2013). Field-quantified responses of tropical rainforest aboveground productivity to increasing CO2 and climatic stress, 1997-2009. Journal of Geophysical Research: Biogeosciences, 118(2), 783–794.

Cole, R. J., Holl, K. D., & Zahawi, R. A. (2010). Seed rain under tree islands planted to restore degraded lands in a tropical agricultural landscape. Ecological Applications, 20(5), 1255–1269.

Curran, L. M., & Webb, C. O. (2000). Experimental tests of the spatiotemporal scale of seed predation in mast-fruiting Dipterocarpaceae. Ecological Monographs, 70(1), 129–148.

DeMattia, E. A., Curran, L. M., & Rathcke, B. J. (2004). Effects of small rodents and large mammals on neotropical seeds. Ecology, 85(8), 2161–2170.

Dirzo, R., & Dominguez, C. (1995). Plant-Herbivore Interactions in Mesoamerican Tropical Dry Forests. In S. Bullock, H. Mooney, & E. Medina (Eds.), Seasonally Dry Tropical Forests (pp. 304–325). Cambridge University Press.

Dirzo, R., & Miranda, A. (1991). Altered patterns of herbivory and diversity in the forest understory: A case study of the possible consequences of contemporary defaunation. In P. Price, T. Lewinsohn, W. Fernandez, & W. Bensen (Eds.), Plant-animal interactions: Evolutionary ecology in tropical and temperate regions (pp. 273–287). Cambridge University Press. https://doi.org/10.1017/S0007485300033654

Feng, L., Chen, S., & Wang, B. (2021). Fine-scale spatiotemporal variation in seed-rodent interactions: A potential contribution to species coexistence. Forest Ecology and Management, 498, 119566.

Firn, J., Schütz, M., Nguyen, H., & Risch, A. C. (2017). Herbivores sculpt leaf traits differently in grasslands depending on life form and land-use histories. Ecology, 98(1), 239–252.

Galetti, M., Bovendorp, R. S., & Guevara, R. (2015). Defaunation of large mammals leads to an increase in seed predation in the Atlantic forests. Global Ecology and Conservation, 3, 824–830.

Genes, L., & Dirzo, R. (2022). Restoration of plant-animal interactions in terrestrial ecosystems. Biological Conservation, 265, 109393.

Gongora, J., Reyna-Hurtado, R., Beck, H., Taber, A., Altrichter, M., & Keuroghlian, A. (2011). Collared peccary. The IUCN Red List of Threatened Species.

Grossnickle, S. C., & MacDonald, J. E. (2018). Why seedlings grow: influence of plant attributes. New Forests, 49(1), 1–34.

Hartshorn, G. S. (1983). Plants. In D. Janzen (Ed.), Costa Rican Natural History (pp. 118–157).

Hawkes, C., & Sullivan, J. (2001). The impact of herbivory on plants in different resource conditions: a meta-analysis. Ecology, 82(7), 2045–2058.

Hermes, M. S., Morales, A., Bustamante, A., & Castro, M. (2006). Riqueza y distribución de mamíferos medianos y grandes en San Lucas. Revsita de Ciencias Ambientales, 32(1), 21–25.

Holdridge, L. (1988). Life zone ecology. Tropical Science Center, 206.

Huntly, N. (1991). Herbivores and the dynamics of communities and ecosystems. Annual Review of Ecology and Systematics, 22(1), 477–503.

Ickes, K., Dewalt, S. J., & Appanah, S. (2001). Effects of native pigs (Sus scrofa) on woody understorey vegetation in a Malaysian lowland rain forest. Journal of Tropical Ecology, 17(2), 191–206.

Janzen, D. H. (1971). Seed predation by animals. Annual Review of Ecology and Systematics, 2(1), 465–492.

Kalka, M. B., Smith, A. R., & Kalko, E. K. V. (2008). Bats limit arthropods and herbivory in a tropical forest. Science, 320(5872), 71.

Kéfi, S., Berlow, E. L., Wieters, E. A., Navarrete, S. A., Petchey, O. L., Wood, S. A., Boit, A., Joppa, L. N., Lafferty, K. D., Williams, R. J., Martinez, N. D., Menge, B. A., Blanchette, C. A., Iles, A. C., & Brose, U. (2012). More than a meal… integrating non-feeding interactions into food webs. Ecology Letters, 15(4), 291–300.

Kuprewicz, E. K. (2013). Mammal abundances and seed traits control the seed dispersal and predation roles of terrestrial mammals in a Costa Rican forest. Biotropica, 45(3), 333–342.

Kurten, E. L. (2013). Cascading effects of contemporaneous defaunation on tropical forest communities. Biological Conservation, 163, 22–32.

Leigh, E. G., Wright, S. J., Herre, E. A., & Putz, F. E. (1993). The decline of tree diversity on newly isolated tropical islands: A test of a null hypothesis and some implications. Evolutionary Ecology, 7(1), 76–102. https://doi.org/10.1007/BF01237735

Martínez-Ramos, M., & Soto-Castro, A. (1993). Seed rain and advanced regeneration in a tropical rain forest. Vegetatio, 107(108), 299–318. https://doi.org/10.1007/978-94-011-1749-4_21

Maschinski, J., & Whitham, T. G. (1989). The Continuum of Plant Responses to Herbivory: The Influence of Plant Association, Nutrient Availability, and Timing. The American Naturalist, 134(1), 1–19. https://doi.org/10.1086/284962

Masis-Aguilar, A. (2019). Plan de manejo de la reserva Nogal para optar por la categoría de manejo de Refugio de Vida Silvestre Privado. Chiquita Brands Costa Rica S.R.L.

McNaughton, S. J. (1983). Compensatory Plant Growth as a Response to Herbivory. Oikos, 40(3), 336. https://doi.org/10.2307/3544305

Medinaceli, A., Miranda-Avilés, F., & Gutierrez-Calucho, E. (2004). Herbivoría en relación al tamaño de la planta y a las diferencias de exposición de Pilea sp. (Urticaceae) en la Estación Biológica Tunquini, Cotapata, La Paz - Bolivia. Ecología en Bolivia, 39(2), 4–8.

Mendoza, E., & Dirzo, R. (2007). Seed-size variation determines interspecific differential predation by mammals in a neotropical rain forest. Oikos, 116(11), 1841–1852. https://doi.org/10.1111/J.0030-1299.2007.15878.X

Michel, N. L., Carson, W. P., & Sherry, T. W. (2015). Do Collared Peccaries Negatively Impact Understory Insectivorous Rain Forest Birds Indirectly Via Lianas and Vines? Biotropica, 47(6), 745–757.

Michel, N. L., Sherry, T. W., & Carson, W. P. (2014). The omnivorous collared peccary negates an insectivore-generated trophic cascade in Costa Rican wet tropical forest understory. Journal of Tropical Ecology, 30(1), 1–11.

Michel, N., & Sherry, T. (2012). Human-Altered Mesoherbivore Densities and Cascading Effects on Plant and Animal Communities in Fragmented Tropical Forests. In P. Sudarshana, M. Nageswara-Rao, & J. R. Sonegi (Eds.), Tropical Forests (pp. 177–202). InTech.

Muller-landau, H. C., & Wright, S. J. (2010). Litterfall Monitoring Protocol. In CTFS Global Forest Carbon Research Initiative.

Neuschulz, E. L., Mueller, T., Schleuning, M., & Böhning-Gaese, K. (2016). Pollination and seed dispersal are the most threatened processes of plant regeneration. Scientific Reports, 6(1), 1–6. https://doi.org/10.1038/srep29839

Norden, N. (2014). Del porqué la regeneración natural es tan importante para la coexistencia de especies en los bosques tropicales. Colombia Forestal, 17(2), 247–261.

Ontiveros, T. Y., Cappa, F. M., Campos, C. M., & Giannoni, S. M. (2021). Confirmación de la presencia de pecarí de collar (Pecari tajacu) en el Parque Provincial Ischigualasto (San Juan, República Argentina). Notas sobre Mamíferos Sudamericanos, 2(5), 001–006.

Orozco, L., & Brumer, C. (2002). Inventarios forestales para bosques latifoliados en América Central. L. Orozco (Ed.). Centro Agronómico de Tropical de Investigación y Enseñanza (CATIE).

Osorto-Núñez, M. H., & Alvarado, L. D. A. (2023). Uso de espacios naturales y antropizados por el pecarí de collar (Dicotyles tajacu) en la estación biológica La Selva, Costa Rica. Revista Mexicana de Mastozoología (Nueva Época), 13(1), 24–32. https://doi.org/10.22201/IE.20074484E.2023.13.1.383

Osorto-Núñez, M. H., Alvarado, L. D. A., Romero, F. A. C., & Rodrigues, F. H. G. (2023). Contribution to the knowledge on the diet of the collared peccary (Dicotyles tajacu) at the La Selva Biological Station, Costa Rica. Therya Notes, 4, 120–126. https://doi.org/10.12933/THERYA_NOTES-23-117

Osunkoya, O. O., Ash, J. E., Hopkins, M. S., & Graham, A. W. (1993). Growth of tree seedlings in tropical rain forests of North Queensland, Australia. Journal of Tropical Ecology, 9(1), 1–18.

Oviedo-Pérez, P. (2008). Distribución espacial de tinámidos (Tinamiformes) en La Estación Biológica La Selva, Costa Rica. Uniciencia, 22(1-2), 93–97.

Paine, C. E. T., & Beck, H. (2007). Seed predation by neotropical rain forest mammals increases diversity in seedling recruitment. Ecology, 88(12), 3076–3087.

Pearson, T. R. H., Burslem, D. F. R. P., Goeriz, R. E., & Dalling, J. W. (2003). Interactions of gap size and herbivory on establishment, growth and survival of three species of neotropical pioneer trees. Journal of Ecology, 91(5), 785–796.

Powell, L. L., Cordeiro, N. J., & Stratford, J. A. (2015). Ecology and conservation of avian insectivores of the rainforest understory: A pantropical perspective. Biological Conservation, 188, 1–10.

Queenborough, S. A., Metz, M. R., Wiegand, T., & Valencia, R. (2012). Palms, peccaries, and perturbations: Widespread effects of small-scale disturbance in tropical forests. BMC Ecology, 12(1), 1–15.

Raich, J. W., Clark, D. A., Schwendenmann, L., & Wood, T. E. (2014). Aboveground tree growth varies with belowground carbon allocation in a tropical rainforest environment. PLOS ONE, 9(6), e100275.

Ramírez-Mejía, D., & Mendoza, E. (2010). El papel funcional de la interacción planta-mamífero en el mantenimiento de la diversidad tropical. Biológicas, 12(1), 8–13.

Reider, K. E., Carson, W. P., & Donnelly, M. A. (2013). Effects of collared peccary (Pecari tajacu) exclusion on leaf litter amphibians and reptiles in a Neotropical wet forest, Costa Rica. Biological Conservation, 163, 90–98. https://doi.org/10.1016/j.biocon.2012.12.015

Robinson, C., Saatchi, S., Clark, D., Astaiza, J. H., Hubel, A. F., & Gillespie, T. W. (2018). Topography and Three-Dimensional Structure Can Estimate Tree Diversity along a Tropical Elevational Gradient in Costa Rica. Remote Sensing, 10(4), 629.

Rodríguez-Matamoros, J., Villalobos-Brenes, F., & Gutiérrez-Espeleta, G. A. (2012). Viabilidad poblacional de Alouatta palliata (Primates: Atelidae) y Cebus capucinus (Primates: Cebidae) en el Refugio de Vida Silvestre Privado Nogal, Sarapiquí, Heredia, Costa Rica. Revista de Biología Tropical, 60(2), 809–832.

Roldán, A. I., & Simonetti, J. A. (2001). Plant-Mammal Interactions in Tropical Bolivian Forests with Different Hunting Pressures. Conservation Biology, 15(3), 617–623.

Romero, A., O’Neill, B. J., Timm, R. M., Gerow, K. G., & McClearn, D. (2013). Group dynamics, behavior, and current and historical abundance of peccaries in Costa Rica’s Caribbean lowlands. Journal of Mammalogy, 94(4), 771–791.

Romero, A., Timm, R. M., Gerow, K. G., & McClearn, D. (2016). Nonvolant mammalian populations in primary and secondary Central American rainforests as revealed by transect surveys. Journal of Mammalogy, 97(2), 331–346.

Rumiz, D. I. (2010). Roles ecológicos de los mamíferos medianos y grandes. In R. B. Wallace, H. Gómez, & Z. R. Porcel (Eds.), Distribución, ecología y conservación de los mamíferos medianos y grandes de Bolivia (pp. 53–73). Centro de Ecología Difusión, Fundación Simón I. Patiño.

Salazar-Blanco, M. (2001). Estudio de la dinámica y estructura de dos bosques secundarios húmedos tropicales ubicados en la estación biológica La Selva, puerto viejo de Sarapiquí, Heredia, Costa Rica (Tesis de Licenciatura) Instituto Tecnológico de Costa Rica, Costa Rica.

Seiwa, K., & Kikuzawa, K. (1991). Phenology of tree seedlings in relation to seed size. Canadian Journal of Botany, 69(3), 532–538.

Shapiro, S. S., & Wilk, M. B. (1965). An Analysis of Variance Test for Normality (Complete Samples). Biometrika, 52(3/4), 591‒611.

Sousa-Neto, J. de, Soares, M. B., de Oliveira, M. S., Bettini, B. A., & Abdo, M. T. (2016). Influencia da distância de borda sobre as espécies arbóreas e comunidade de plantas invasoras em um fragmento de floresta estacional na Reserva Biológica de Pindorama. 10o Congresso Interinstitucional de Iniciação Científica - CIIC 2016, 12.

Stahle, L., & Wold, S. (1989). Analysis of variance (ANOVA). Chemometrics and Intelligent Laboratory Systems, 6(4), 259–272.

Stoner, K. E., Vulinec, K., Wright, S. J., & Peres, C. A. (2007). Hunting and Plant Community Dynamics in Tropical Forests: A Synthesis and Future Directions. Biotropica, 39(3), 385–392.

Teichman, K., Nielsen, S., & Roland, J. (2013). Trophic cascades: linking ungulates to shrub-dependent birds and butterflies. Journal of Animal Ecology, 82(6), 1288–1299.

Terborgh, J. (1992). Maintenance of Diversity in Tropical Forests. Biotropica, 24(2), 283-292.

Terborgh, J., & Wright, S. J. (1994). Effects of mammalian herbivores on plant recruitment in two neotropical forests. Ecology, 75(6), 1829–1833.

Ubieta, S. A., Dierckxsens-Uitdewilligen, M., Gonzalo-Garrido, M., López-Fernández, K., Kluge, L. S., Mac-Ginty, J. S., Valenciano-Salazar, J. A., & de Jeude, V. L. (2009). Alianzas para el desarrollo: Motor de la responsabilidad social; Casos de organizaciones públicas y privadas en Costa Rica. L. Sariego-Kluge, & J. Nowalski-Rowinsk (Eds.), Fundación para la Sostenibilidad y la Equidad (ALIARSE).

Valenzuela, D. (1998). Natural history of the white-nosed coati, Nasua narica, in a tropical dry forest of Western Mexico. Revista Mexicana de Mastozoología (Nueva Época), 3(1), 26–44.

Vallejo-Marín, M., Domínguez, C. A., & Dirzo, R. (2006). Simulated seed predation reveals a variety of germination responses of neotropical rain forest species. American Journal of Botany, 93(3), 369–376.

Van Bael, S. A., & Brawn, J. D. (2005). Erratum: The direct and indirect effects of insectivory by birds in two contrasting Neotropical forests. Oecologia, 145(4), 658–668.

Vandegehuchte, M. L., Schütz, M., de Schaetzen, F., & Risch, A. C. (2017). Mammal-induced trophic cascades in invertebrate food webs are modulated by grazing intensity in subalpine grassland. Journal of Animal Ecology, 86(6), 1434–1446.

Wahungu, G. M., Catterall, C. P., & Olsen, M. F. (2002). Seedling predation and growth at a rainforest pasture ecotone, and the value of shoots as seedling analogues. Forest Ecology and Management, 162(2-3), 251–260.

Wright, S. J. (2003). The myriad consequences of hunting for vertebrates and plants in tropical forests. Perspectives in Plant Ecology, Evolution and Systematics, 6(1-2), 73–86.

Yong, D. L., Qie, L., Sodhi, N. S., Koh, L. P., Peh, K. S. H., Lee, T. M., Lim, H. C., & Lim, S. L. H. (2011). Do insectivorous bird communities decline on land-bridge forest islands in Peninsular Malaysia? Journal of Tropical Ecology, 27(1), 1–14.

Zhu, X., Liu, W., Chen, H., Deng, Y., Chen, C., & Zeng, H. (2019). Effects of forest transition on litterfall, standing litter and related nutrient returns: Implications for forest management in tropical China. Geoderma, 333, 123–134.

Comments

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2024 Revista de Biología Tropical

Downloads

Download data is not yet available.