Revista de Biología Tropical ISSN Impreso: 0034-7744 ISSN electrónico: 2215-2075

Environmental sympatry through time: spatio-temporal distribution and conservation status of two sympatric anuran species (Leptodactylidae) in South America

How to Cite

Acosta, R., Alvarez, F., Figueira, B., Castro Cavicchinni, S., Vera, R., Cruz Flores, D. D., & Nuñez, A. (2024). Environmental sympatry through time: spatio-temporal distribution and conservation status of two sympatric anuran species (Leptodactylidae) in South America. Revista De Biología Tropical, 72(1), 53860.


Introduction: Leptodactylus latinasus and Physalaemus cuqui are sympatric anuran species with similar environmental requirements and contrasting reproductive modes. Climatic configuration determines distribution patterns and promotes sympatry of environmental niches, but specificity/selectivity determines the success of reproductive modes. Species distribution models (SDM) are a valuable tool to predict spatio-temporal distributions based on the extrapolation of environmental predictors. Objectives: To determine the spatio-temporal distribution of environmental niches and assess whether the protected areas of the World Database of Protected Areas (WDPA) allow the conservation of these species in the current scenario and future. Methods: We applied different algorithms to predict the distribution and spatio-temporal overlap of environmental niches of L. latinasus and P. cuqui within South America in the last glacial maximum (LGM), middle-Holocene, current and future scenarios. We assess the conservation status of both species with the WDPA conservation units. Results: All applied algorithms showed high performance for both species (X̅TSS = 0.87, X̅AUC = 0.95). The L. latinasus predictions showed wide environmental niches from LGM to the current scenario (49 % stable niches, 37 % gained niches, and 13 % lost niches), suggesting historical fidelity to stable climatic-environmental regions. In the current-future transition, L. latinasus would increase the number of stable (70 %) and lost (20 %) niches, suggesting fidelity to lowland regions and a possible trend toward microendemism. P. cuqui loses environmental niches from the LGM to the current scenario (25 %) and in the current-future transition (63 %), increasing the environmental sympathy between both species; 31 % spatial overlap in the current scenario and 70 % in the future. Conclusion: Extreme drought events and rainfall variations, derived from climate change, suggest the loss of environmental niches for these species that are not currently threatened but are not adequately protected by conservation units. The loss of environmental niches increases spatial sympatry which represents a new challenge for anurans and the conservation of their populations.


Aiello-Lammens, M. E., Boria, R. A., Radosavljevic, A., Vilela, B., & Anderson, R. P. (2015). spThin: an R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography, 38(5), 541–545.

Allouche, O., Tsoar, A., & Kadmon, R. (2006). Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology, 43, 1223–1232.

Alvarez, F., da Silva, S. G., Guevara-Chumacero, L. M., Fernandes Ferreira, F., Alvarez Borla, L., de Sousa, R. F., & Silva D. P. (2021). The ghost vampire: spatio-temporal distribution and conservation status of the largest bat in the Americas. Biodiversity and Conservation, 30(14), 4359–4377.

Alvarez, F., Morandi, P. S., Marimon-Junior, B. H., Exavier, R., Araújo, I., Mariano, L. H., Muller, A. O., Feldpausch, T. R., & Marimon, B. S. (2022). Climate defined but not soil-restricted: the distribution of a Neotropical tree through space and time. Plant and Soil, 471, 175–191.

Anderson, M. J., Crist, T. O., Chase, J. M., Vellend, M., Inouye, B. D., Freestone, A. L., & Harrison, S. P. (2011). Navigating the multiple meanings of β diversity: a roadmap for the practicing ecologist. Ecology Letters, 14(1), 19–28.

Andrade-Díaz, M. S., Giraudo, A. R., Marás, G. A., Didier, K., Sarquis, J. A., Díaz-Gómez, J. M., & Prieto-Torres, D. A. (2021). Austral Yungas under future climate and land-use changes scenarios: the importance of protected areas for long-term amphibian conservation. Biodiversity and Conservation, 30(12), 3335–3357.

Bardier, C., Canavero, A., & Maneyro, R. (2014). Temporal and spatial activity patterns of three species in the Leptodactylus fuscus group (Amphibia, Leptodactylidae). South American Journal of Herpetology, 9(2), 106–113.

Barve, N., Barve, V., Jiménez-Valverde, A., Lira-Noriega, A., Maher, S. P., Peterson, A. T., & Villalobos, F. (2011). The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecological Modelling, 222(11), 1810–1819.

Becker, R. A., & Wilks, A. R. (1993). Maps in S. AT&T Bell Laboratories Statistics Research Report (93.2).

Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W., & Courchamp, F. (2012). Impacts of climate change on the future of biodiversity. Ecology Letters, 15(4), 365–377.

Blaustein, A. R., Walls, S. C., Bancroft, B. A., Lawler, J. J., Searle, C. L., & Gervasi, S. S. (2010). Direct and indirect effects of climate change on amphibian populations. Diversity, 2(2), 281–313.

Bruzzi-Lion, M., Garda, A., Lee, T. M., Bickford, D., Correa-Costa, G., & Fonseca, C. (2019). Global patterns of terrestriality in amphibian reproduction. Global Ecology and Biogeography, 28(6), 744–756.

Burger, J. R., Anderson, R. P., Balk, M. A., & Fristoe, T. S. (2019). A constraint-based model of dynamic island biogeography: environmental history and species traits predict hysteresis in populations and communities. Frontiers of Biogeography, 11(3), e44383.

Carey, C., & Alexander, M. A. (2003). Climate change and amphibian declines: is there a link? Diversity and Distributions, 9(2), 111–121.

Clavel, J., Julliard, R., & Devictor, V. (2011). Worldwide decline of specialist species: toward a global functional homogenization? Frontiers in Ecology and the Environment, 9(4), 222–228.

De Almeida, M. C., Cortes, L. G., & De Marco Junior, P. (2010). New records and a niche model for the distribution of two Neotropical damselflies: Schistolobos boliviensis and Tuberculobasis inversa (Odonata: Coenagrionidae). Insect Conservation and Diversity, 3(4), 252–256.

De Andrade, A. F. A., Velazco, S. J. E., & De Marco, P. J. (2020). ENMTML: An R package for a straightforward construction of complex ecological niche models. Environmental Modelling & Software, 125, 104615.

De Marco, P. J., & Nóbrega, C. C. (2018). Evaluating collinearity effects on species distribution models: An approach based on virtual species simulation. PloS ONE, 13(9), e0202403.

De Marzo, T., Gasparri, N. I., Lambin, E. F., & Kuemmerle, T. (2022). Agents of forest disturbance in the Argentine dry Chaco. Remote Sensing, 14(7), 1758.

Domisch, S., Jähnig, S. C., Simaika, J. P., Kuemmerlen, M., & Stoll, S. (2015). Application of species distribution models in stream ecosystems: the challenges of spatial and temporal scale, environmental predictors and species occurrence data. Fundamental and Applied Limnology, 186(1-2), 45–61.

Downie, J. R., & Smith, J. (2003). Survival of larval Leptodactylus fuscus (Anura: Leptodactylidae) out of water: developmental differences and interspecific comparisons. Journal of Herpetology, 37(1), 107–115.

Elith, J., Graham, C. H., Anderson, R. P., Dudík, M., Ferrier, S., & Guisan, A. (2006). Novel methods improve prediction of species’ distributions from occurrence data. Ecography, 29(2),129–151.

Exbrayat, J. M. (2018). From oviparity to marsupialism: strange modes of reproduction in amphibians. International Journal of Zoology and Animal Biology, 1(2), 000108.

Ferrari, L., & Vaira, M. (2001). Advertisement call and breeding activity of Physalaemus cuqui (Lobo, 1993). Herpetological Bulletin, 77, 20–22.

Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37(12), 4302–4315.

Fielding, A. H., & Bell, J. F. (1997). A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation, 24(1), 38–49.

Fouquet, A., Gilles, A., Vences, M., Marty, C., & Blanc, M. (2007). Underestimation of species richness in neotropical frogs revealed by mtDNA analyses. PloS ONE 2(10), e1109.

Frost, D. R. (2022). Amphibian Species of the World: an online reference (Version 6.1).

GBIF. (2023a). GBIF Occurrence Download.

GBIF. (2023b). GBIF Occurrence Download.

Grenouillet, G., Buisson, L., Casajus, N., & Lek, S. (2011). Ensemble modelling of species distribution: the effects of geographical and environmental ranges. Ecography, 34(1), 9–17.

Guélat, J., & Kéry, M. (2018). Effects of spatial autocorrelation and imperfect detection on species distribution models. Methods in Ecology and Evolution, 9(6), 1614–1625.

Hastie, T., Tibshirani, R. & Friedman, J. (2009). The elements of statistical learning (2nd Ed). Springer.

Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25(15), 1965–1978.

Hijmans, R. J., Phillips, S., Leathwick, J., Elith, J., & Hijmans, M. R. J. (2017). Package ‘dismo’. Circles, 9(1), 1–68.

Hijmans, R. J., Van Etten, J., Cheng, J., Mattiuzzi, M., Sumner, M., Greenberg, J. A., & Hijmans, M. R. J. (2015). Package ‘raster’. R Package, 734.

Hortal, J., de Bello, F., Diniz-Filho, J. A. F., Lewinsohn, T. M., Lobo, J. M., & Ladle, R. J. (2015). Seven shortfalls that beset large-scale knowledge of biodiversity. Annual Review of Ecology, Evolution, and Systematics, 46, 523–549.

Hutchinson, G. E. (1957) Concluding Remarks. Cold Spring Harbor Symposium on Quantitative Biology, 22, 415–427.

Iglesias, J. M. P., & Natale, G. S. (2013). Physalaemus cuqui (Lobo, 1993). Ampliación de su distribución y confirmación del registro para la provincia de Santiago del Estero, Argentina. Cuadernos de Herpetología, 27(2), 173–176.

IUCN SSC Amphibian Specialist Group. (2022). Physalaemus cuqui. The IUCN Red List of Threatened Species 2022: e.T57249A101431302.

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An Introduction to Statistical Learning. Springer.

Jiménez de La Espada, M. J. (1875). Vertebrados del viaje al Pacífico verificado de (1862) a (1865) por una comisión de naturalistas enviada por el gobierno español. Ginesta.

Karatzoglou, A., Smola, A., Hornik, K., & Zeileis, A. (2004). Kernlab-an S4 package for kernel methods in R. Journal of Statistical Software, 11(9), 1–20.

Keitt, T. H. (2010). Rgdal: Bindings for the Geospatial Data Abstraction Library. (Version 0.6-28, “R Package”).

Kohler, P., Bintanja, R., Fischer, H., Joos, F., Knutti, R., & Lomhann, G. (2010). What caused Earth’s temperature variations during the last 800,000 years? Data-based evidence on radiative forcing and constraints on climate sensitivity. Quaternary Science Reviews, 29(1-2), 129–45.

Kubiak, B. B., Gutiérrez, E. E., Galiano, D., Maestri, R., & de Freitas, T. R. (2017). Can niche modeling and geometric morphometrics document competitive exclusion in a pair of subterranean rodents (genus Ctenomys) with tiny parapatric distributions? Scientific Reports, 7(1), 1–13.

Lavilla, E., Heyer, R., Kwet, A., & Langone, J. (2004). Leptodactylus latinasus. The IUCN Red List of Threatened Species 2004: e. T57139A11590252.

Leroy, B., Delsol, R., Hugueny, B., Meynard, C. N., Barhoumi, C., Barbet-Massin, M., & Bellard, C. (2018). Without quality presence–absence data, discrimination metrics such as TSS can be misleading measures of model performance. Journal of Biogeography, 45(9), 1994–2002.

Liaw, A., & Wiener, M. (2002). Classification and regression by random forest. R News, 2, 18–22.

Lobo, F. (1993). Descripción de una nueva especie del género Physalaemus (Anura: Leptodactylidae) del Noroeste Argentino. Revista Española de Herpetología, 7, 13–20.

Magurran, A. E., Dornelas, M., Moyes, F., & Henderson, P. A. (2019). Temporal β diversity. A macroecological perspective. Global Ecology and Biogeography, 28(12), 1949–1960.

Martins, M. (1988). Biologia reprodutiva de Leptodactylus fuscus em Boa Vista, Raraima (Amphibia: Anura). Revista Brasileira de Biología, 48(4), 969–977.

Medina, R. G., Lira-Noriega, A., Aráoz, E., & Ponssa, M. L. (2020). Potential effects of climate change on a Neotropical frog genus: changes in the spatial diversity patterns of Leptodactylus (Anura, Leptodactylidae) and implications for their conservation. Climatic Change, 161(4), 535–553.

Menéndez-Guerrero, P. A., Green, D. M., & Davies, T. J. (2020). Climate change and the future restructuring of Neotropical anuran biodiversity. Ecography, 43(2), 222–235.

Pearson, R. G., Raxworthy, C. J., Nakamura, M., & Townsend, P. A. (2007). Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. Journal of Biogeography, 34(1), 102–117.

Peel, M. C., Finlayson, B. L., & McMahon, T. A. (2007). Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences, 11(5), 1633–1644.

Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modeling, 190(3), 231–259. odel.2005.03.026

Ponssa, M. L., & Barrionuevo, J. S. (2008). Foam-generating behaviour in tadpoles of Leptodactylus latinasus (Amphibia, Leptodactylidae): significance in systematics. Zootaxa, 1884(1), 51–59.

Ponssa, M. L., Medina, R. G., & Vera Candiotti, M. F. (2019). Ranita silbadora Leptodactylus latinasus. Universo Tucumano: cómo, cuándo y dónde de la naturaleza tucumana, contada por los lilloanos. En G. J. Scrocchi, & C. Szumik (Eds.). Fundación Miguel Lilo & CONICET.

Pounds, J. A., Bustamante, M. R., Coloma, L. A., Consuegra, J. A., Fogden, M. P., Foster, P. N., & Ron, S. R. (2006). Widespread amphibian extinctions from epidemic disease driven by global warming. Nature, 439(7073), 161–167.

QGIS Development Team. (2022). QGIS Geographic Information System. Open Source Geospatial Foundation Project.

Qiao, H., Peterson, T., Campbell, L. P., Soberon, J., Ji, L., & Escobar, L. E. (2016). NicheA: Creating virtual species and ecological niches in multivariate environmental scenarios. Ecography, 39, 805–813.

R Core Team. (2019). R: A language and environment for statistical computing (Software). R Foundation for Statistical Computing, Vienna, Austria.

Salcedo-Sanz, S., Rojo-Álvarez, J. L., Martínez-Ramón, M., & Camps-Valls, G. (2014). Support vector machines in engineering: an overview. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 4(3), 234–267.

Schwalm, C. R., Glendon, S., & Duffy, P. B. (2020). RCP8. 5 tracks cumulative CO2 emissions. Proceedings of the National Academy of Sciences, 117(33), 19656–19657.

Silverman, B. W. (1986). Density estimation for statistics and data analysis. Chapman and Hall.

Soberon, J. (2007). Grinnellian and Eltonian niches and geographic distributions of species. Ecology Letters, 10(12), 1115–1123.

Soberon, J., & Nakamura, M. (2009). Niches and distributional areas: concepts, methods, and assumptions. Proceedings of the National Academy of Sciences, 106, 19644–19650.

Sobral-Souza, T., Lima-Ribeiro, M. S., & Solferini, V. N. (2015). Biogeography of Neotropical Rainforests: past connections between Amazon and Atlantic Forest detected by ecological niche modeling. Evolutionary Ecology, 29(5), 643–655.

speciesLink. (2023a). Leptodactylus latinasus. speciesLink Occurrence Download

speciesLink. (2023b). Physalaemus cuqui. speciesLink Occurrence Download

Stuart, S. N., Chanson, J. S., Cox, N. A., Young, B. E., Rodrigues, A. S., Fischman, D. L., & Waller, R. W. (2004). Status and trends of amphibian declines and extinctions worldwide. Science, 306(5702), 1783–1786.

Stuart, S. N., Hoffmann, M., Chanson, J. S., Cox, N. A., Berridge, R. J., Ramani, P., & Young, B. E. (2008). Threatened Amphibians of the World. Lynx Editions, IUCN & Conservation International.

UNEP-WCMC (United Nations Environment Programme World Conservation Monitoring Centre), & IUCN (International Union for Conservation of Nature). (2020). Protected Planet: The World Database on Protected Areas (WDPA). UNEP-WCMC & IUCN.

Van Aelst, S., & Rousseeuw, P. (2009). Minimum volume ellipsoid. Wiley Interdisciplinary Reviews: Computational Statistics, 1, 71–82.

Vanderwal, J., Falconi, L., Januchowski, S., Shoo, L., & Storlie, C. (2014). SDMTools: Species Distribution Modelling Tools: Tools for processing data associated with species distribution modelling exercises (Version 1, 1-221, “R Package”).

Varela, S., Lima-Ribeiro, M. S., & Terribile, L. C. (2015). A short guide to the climatic variables of the glacial maximum for biogeographers. PLoS ONE, 10(6), e0129037.

Wake, D. B. (1991). Declining amphibian populations. Science, 253(5022), 860–861.


Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2024 Revista de Biología Tropical


Download data is not yet available.