Revista de Biología Tropical ISSN Impreso: 0034-7744 ISSN electrónico: 2215-2075

The contribution of assisted coral restoration to calcium carbonate production in Eastern Pacific reefs


direct propagation; coral fragments; eastern tropical Pacific; branching corals; massive corals.
propagación directa; fragmentos de coral; Pacífico tropical oriental; corales ramificados; corales masivos.

How to Cite

Tortolero-Langarica, J. J. A., Rodríguez-Troncoso, A. P., Alvarez-Filip, L., Cupul-Magaña, A. L., & Carricart-Ganivet, J. P. (2023). The contribution of assisted coral restoration to calcium carbonate production in Eastern Pacific reefs. Revista De Biología Tropical, 71(S1), e54849.


Introduction: Hermatypic corals have the capacity to construct the physical reef-framework and maintain the balance of coral reef functionality. However, in the past three decades, coral communities have been menaced by natural and anthropic pressures, resulting in an abrupt coral cover decline, and slow natural recovery.  To mitigate coral reef collapse, assisted restoration techniques has been implemented and improved worldwide, However, the long-term effects of such interventions on ecological attributes have been scarcely reported. 

Objective: This study evaluated the effect of assisted coral intervention on calcium carbonate production (kg CaCO3 m-2 yr-1) and ecological volume (cm3) yielded by branching and massive corals from the central Mexican Pacific. 

Methods: We used colony size, extension rate, and skeletal density measurements of direct outplanted Pocillopora and Pavona coral species to calculate coral carbonate production, ecological volume, and model their long-term potential. 

Results: Coral carbonate produced after one-year of outplanting increased by 42 % (1.17 kg CaCO3 m-2 yr-1), where Pocillopora spp. and Pavona clavus corals contribute with 0.97 and 0.20 kg CaCO3 m-2 yr-1, respectively. The ecological volume also increased by 384 cm3 for Pocillopora and 56 cm3 for Pavona after one year period. Furthermore, the results suggest that long-term coral restoration actions (10 years) have the potential to significantly increase carbonate production. 

Conclusions: our data indicate that coral restoration initiatives have the potential to help mitigate the current low calcium carbonate production of Mexican Pacific reefs and may significantly contribute to the long-term maintenance of reef-framework based on ecological engineering tools, such initiatives represent essential functional properties related to reef ecosystem services provision.


Allemand, D., Tambutté, E., Zoccola, D., & Tambutté, S. (2011). Coral calcification, cells to reefs. In Z. Dubinsky, & N. Stambler (Eds.), Coral reefs: an ecosystem in transition (pp 119–15). Springer.

Alvarado, J. J., Sánchez-Noguera, C., Arias-Godínez, C. G., Araya, T., Fernández-García, C., & Guzmán, A. G. (2020). Impact of El Niño 2015-2016 on the coral reefs of the Pacific of Costa Rica: the potential role of marine protection. Revista de Biología Tropical, 68(Suppl. 1), S271–S282.

Alvarado, J. J., Cortes, J., Guzman, H., Reyes-Bonilla, H. (2016) Bioerosion by the sea urchin Diadema mexicanum along Eastern Tropical Pacific coral reefs. Marine Ecology. 37, 1088–1102.

Boch, C. A., & Morse, A. N. C. (2012). Testing the effectiveness of direct propagation techniques for coral restoration of Acropora spp. Ecological Engineering, 40, 11–17. 1016/j.ecoleng.2011.12.026.

Boström-Einarsson, L., Babcock, R. C. Bayraktarov, E. Ceccarelli, D., Cook, N., Ferse, S. C., Hancock, B., Harrison, P., Hein, M., Shaver, E., Smith, A., Suggett, D. A., Stewart-Sinclair, P., Vardi, T., & McLeod, I. M. (2020). Coral restoration—A systematic review of current methods, successes, failures and future directions. PLoS ONE, 15, e0226631

Cabral-Tena, R. A., López-Pérez, A., Alvarez-Filip, L., González-Barrios, F. J., Calderon-Aguilera, L. E., & Aparicio-Cid, C. (2020). Functional potential of coral assemblages along a typical eastern tropical Pacific reef tract. Ecological Indicators, 119, 106795.

Cabral-Tena, R. A., López-Pérez, A., Reyes-Bonilla, H., Calderon-Aguilera, L. E., Norzagaray-López, C. O., Rodríguez-Zaragoza, F. A., Cupul-Magaña, A., Rodríguez-Troncoso, A. P., & Ayala-Bocos, A. (2018). Calcification of coral assemblages in the eastern Pacific: Reshuffling calcification scenarios under climate change. Ecological Indicators, 95, 726–734.

Carriquiry, J. D., Cupul-Magaña, A., Rodríguez-Zaragoza, F., & Medina-Rosas, P. (2001). Coral bleaching and mortality in the Mexican Pacific during the 1997-98 El Niño, and prediction from a remote sensing approach. Buletin of. Marine Science, 69, 237–249.

CONANP (Comisión Nacional de Áreas Naturales Protegidas) (2010). Programa de Conservación y Manejo Reserva de la Biosfera Islas Marías, México. Secretaria de Medio Ambiente y Recursos Naturales, México.

Eakin, C. M. (2001). A tale of two ENSO events: carbonate budgets and the influence of two warming disturbances and intervening variability, Uva Island, Panama. Bulletin of Marine Science, 69, 171–186.

Forsman, Z. H., Rinkenvich, B., & Hunter, C. L. (2006). Investigating fragment size for culturing reef-building corals (Porites lobata and P. compressa) in ex situ nurseries. Aquaculture, 261, 89–97.

Glynn, P. W. (2000). Effects of the 1997-98 El Niño Southern-Oscillation on Eastern Pacific corals and coral reefs: An overview. Proceedings 9th International Coral Reefs Symposium, Bali, Indonesia, 2, 169–174.

Glynn, P. W., Alvarado, J. J., Banks, S., Cortés, J., Feingold, J. S., Jiménez, C., Maragos, J. E., Martínez, P., Maté, J. J., Moanga, D. A., Navarrete, S., Reyes-Bonilla, H., Riegl, B., Rivera, F., Vargas-Ángel, B., Wieters, E. A., & Zapata, F. A. (2017). Eastern Pacific coral reef provinces, coral community structure and composition: an overview. In P. Glynn, D. P. Manzello, & I. Enochs (Eds.), Coral Reefs of the Eastern Tropical Pacific (pp. 107–176). Springer.

Glynn, P. W., Riegl, B., Purkis, S., Kerr, J. M., & Smith, T. B. (2015). Coral reef recovery in the Galápagos Islands: the northernmost islands (Darwin and Wenman). Coral Reefs, 34, 421–436.

Graham, N. A., McClanahan, T. R., MacNeil, M. A., Wilson, S. K., Polunin, N. V., Jennings, S., Chabanet, P., Clark, S., Spalding, M. D., Letourneur, Y., Bigot, L., Galzin, R., Öhman, M. C., Garpe, K. C., Edwards, A. J., & Sheppard, C. R. C. (2008). Climate warming, marine protected areas and the ocean-scale integrity of coral reef ecosystems. Plos One, 3(8), e3039.

González-Pabón, M. A., Tortolero-Langarica, J. J. A., Calderon-Aguilera, L. E., Solana-Arellano, E., Rodríguez-Troncoso, A. P., Cupul-Magaña, A. L., & Cabral-Tena, R. A. (2021). Low calcification rate, structural complexity, and calcium carbonate production of Pocillopora corals in a biosphere reserve of the central Mexican Pacific. Marine Ecology, 42(6), e12678.

Guest, J. R., Dizon, R. M., Edwards, A. J., Franco, C., & Gomez, E. D. (2011). How quickly do fragments of corals “self-attach” after transplantation? Restoration Ecology, 19, 234–242.

Hoegh-Guldberg, O., Mumby, P. J., Hooten, A. J., Steneck, R. S., Greenfield, P., Gomez, E., Harvell, C. D., Sale, P. F., Edwards, A. J., Caldeira, K., Knowlton, N., Eakin, C. M., Iglesia-Prieto, R., Muthiga, N., Bradbury, R., Dubi, A., & Hatziolos, M. E. (2007). Coral reefs under rapid climate change and ocean acidification. Science, 318, 1737–1742.

Hueerkamp, C., Glynn, P. W., D’Croz, L., Maté, J. L., & Colley, S. B. (2001). Bleaching and recovery of five eastern Pacific corals in an el Niño-related temperature experiment. Bulletin of Marine Science, 69, 215–236.

Hughes, T. P., Barnes, M. L., Bellwood, D. R., Cinner, J. E., Cumming, G. S., Jackson, J. B. C., Kleypas, J., van de Leemput, I. A., Lough, J. M., Morrison, T. H., Palumbi, S. R., van Nes, E. H., & Scheffer, M. (2017). Coral reefs in the Anthropocene. Nature, 546, 82–90.

Lamont, T. A. C., Williams, B., Chapuis, L., Prasetya, M. E., Seraphim, M. J., Harding, H. R., May, E. B., Janetski, N., Jompa, J., Smith, D. J., Radford, A. N., & Simpson, S. D. (2021). The sound of recovery: Coral reef restoration success is detectable in the soundscape. Journal of Applied Ecology, 59(3), 742–756.

Lange, I. D., Perry, C. T., & Álvarez-Filip, L. (2020). Carbonate budgets as indicators of functional reef “health”: A critical review of data underpinning census-based methods and current knowledge gaps. Ecological Indicators, 110, 105857.

Lange, I. D., & Perry, C. T. (2019). Bleaching impacts on carbonate production in the Chagos Archipelago: influence of functional coral groups on carbonate budget trajectories. Coral Reefs, 38(4), 619–624.

López-Pérez, A., Cupul-Magaña, A., Ahumada-Sempoal, M. A., Medina-Rosas, P., Reyes-Bonilla, H., Herrero-Pérezrul, M. D., Reyes-Hernández, C., & Lara-Hernández, J. (2015). The coral communities of the Islas Marias archipelago, Mexico: structure and biogeographic relevance to the Eastern Pacific. Marine Ecology, 37(3), 679–690.

Manzello, D. P., Eakin, C. M., & Glynn, P. W. (2017). Effects of global warming and ocean acidification on carbonate budgets of Eastern Pacific coral reefs. In P. Glynn, D. P. Manzello, & I. Enochs (Eds.), Coral Reefs of the Eastern Tropical Pacific (pp. 517–533). Springer.

Montero-Serra, I., Garrabou, J., Doak, D. F., Figuerola, L., Hereu, B., Ledoux, J. B., & Linares, C. (2018). Accounting for Life-history strategies and timescales in marine restoration. Conservation Letters,11(1), e12341.

Page, C. P., Muller, E. M., & Vaughan, D. E. (2018). Microfragmenting for the successful restoration of slow growing massive corals. Ecological Engineering, 123, 86–94.

Pennington, J. T., Mahoney, K. L., Kuwahara, V. S., Kolber, D. D., Calienes, R., & Chavez, F. P. (2006). Primary production in the eastern tropical Pacific: a review. Progress in Oceanography, 69, 285–317.

Perry, C. T., & Alvarez-Filip, L. (2018). Changing geo-ecological functions of coral reefs in the Anthropocene. Functional Ecology, 33(6), 976–988., 1-13.

Perry, C. T., Edinger, E. N., Kench, P. S., Murphy, G. N., Smithers, S. G., Steneck, R. S., & Mumby, P. J. (2012). Estimating rates of biologically driven coral reef framework production and erosion: a new census-based carbonate budget methodology and applications to the reefs of Bonaire. Coral Reefs, 31, 853–868.

Perry, C. T., Lange, I. D., & Januchowski-Hartley, F. A. (2018). ReefBudget Indo-Pacific: online resource and methodology. University of Exeter.

Reyes-Bonilla, H., Carriquiry, J. D., Morales, G. E., & Cupul-Magaña, A. L. (2002). Effects of the 1997-99 El Niño and anti El Niño events on coral communities of the Pacific coast of México. Coral Reefs, 21, 368–372.

Rinkevich, B. (2019a). Coral chimerism as an evolutionary rescue mechanism to mitigate global climate change impacts. Global Change Biology, 25, 1198–1206.

Rinkevich, B. (2019b). The active reef restoration toolbox is a vehicle for coral resilience and adaptation in a changing world. Journal of Marine Science and Engineering, 7, 201.

Rinkevich, B. (2020). Ecological engineering approaches in coral reef restoration. ICES Journal of Marine Science, 78(1), 410–420.

Rinkevich, B., & Loya, Y. (1983). Short-term fate photosynthetic products in a hermatypic coral. Journal of Experimental Marine Biology and Ecology, 73, 175–184.

Romero-Torres, M., Acosta, A., Palacio-Castro, A. M., Treml, E. A, Zapata, F. A, Paz-García, D. A, & Porter, J. W. (2020). Coral reef resilience to thermal stress in the Eastern Tropical Pacific. Global Change Biology, 26(7), 3880–3890.

Selig, E. R., & Bruno, J. F. (2010). A global analysis of the effectiveness of marine protected areas in preventing coral loss. Plos One, 5(2), e9278.

Shaish, L., Levy, G., & Rinkevich, B. (2010). Employing a highly fragmented, weedy coral species in reef restoration. Ecological Engineering, 38, 1424–1432. ecoleng.2010.06.022.

Sheppard, C. R. C., Davy, S. K., & Pilling, G. M. (2009). The Biology of Coral Reefs. Oxford University Press.

Suding, K., Higgs, E., Palmer, M., Callicott, J. B., Anderson, C. B., Baker, M., Gutruch, J. J., Hondula, K. L., LaFevor, M. C., Larson, B. M. H., Randall, A., Ruhl, J. B., & Schwartz, K. Z. S. (2015). Committing to ecological restoration. Science, 348, 638–640. https://

Tortolero-Langarica, J. J. A., Rodríguez-Troncoso, A. P., Carricart-Ganivet, J. P., & Cupul-Magaña, A. L. (2017). Calcification and growth rate recovery of the reef-building Pocillopora species in the northeast tropical Pacific following an ENSO disturbance. PeerJ, 5, e3191.

Tortolero-Langarica, J. A. Rodríguez-Troncoso, A. P. Cupul-Magaña, A. L. Alarcón-Ortega, L. C., & Santiago-Valentín, J. D. (2019). Accelerated recovery of calcium carbonate production in coral reefs using low-tech ecological restoration. Ecological Engineering, 128, 89–97.

Tortolero-Langarica, J. J. A., Rodríguez-Troncoso, A. P., Cupul-Magaña, A. L., Morales-de-Anda, D. E., Caselle, J. E., & Carricart-Ganivet, J. P. (2022). Coral calcification and carbonate production in the eastern tropical Pacific: the role of branching and massive corals in the reef maintenance. Geobiology, 20, 533–545.

Tortolero-Langarica, J. J. A., Rodríguez-Troncoso, A. P., Cupul-Magaña, A. L., & Rinkevich, B. (2020). Micro-fragmentation as an effective and applied tool to restore remote reefs in the Eastern Tropical Pacific. International Journal of Environmental Research and Public Health, 17(18), 6574.

Wang, C., & Fiedler, P. C. (2006). ENSO variability in the Eastern tropical Pacific: a review. Progress in Oceanography, 69, 239–266.


Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.


Download data is not yet available.