Revista de Biología Tropical ISSN Impreso: 0034-7744 ISSN electrónico: 2215-2075

OAI: https://revistas.ucr.ac.cr/index.php/rbt/oai
Change in the composition of fauna associated with Pocillopora spp. (Scleractinia, Pocilloporidae) following transplantation
PDF
HTML
EPUB

Keywords

ecology; symbiosis; facultative; cryptic; seasonality.
ecología; simbiosis; facultativo; críptico; estacionalidad.

How to Cite

Chomitz, B. R., Kleypas, J. A., Cortés, J., & Alvarado, J. J. (2023). Change in the composition of fauna associated with Pocillopora spp. (Scleractinia, Pocilloporidae) following transplantation. Revista De Biología Tropical, 71(S1), e54882. https://doi.org/10.15517/rev.biol.trop.v71iS1.54882

Abstract

Introduction: Associated fauna comprises most of the diversity of a coral reef and performs ecological functions essential to the reef’s survival. Since Pocillopora corals harbor an important associated fauna, reef restoration efforts are underway in Golfo Dulce, Costa Rica, to preserve them. 

Objective: To describe changes in cryptofauna and fish communities associated with Pocillopora colonies to better understand the succession of associated fauna following transplantation. 

Methods: An experimental patch of 30 nursery-grown Pocillopora colonies and a control patch containing no colonies were monitored for 8 months following transplantation in Golfo Dulce. Cryptofauna within each colony and fish within each patch were observed using SCUBA to quantify temporal changes in the abundance, diversity, and community structure of the colonies. 

Results: The abundance and diversity of cryptofauna increased throughout the experiment. Obligate symbiont decapods were the most abundant. The composition of the community of cryptofauna differed between periods with fish in the genus Scarus as the main contributor to any differences. The increase in abundance and diversity of cryptofauna and fish may reflect coral growth and the corresponding availability of space and environmental complexity in the experimental patch. The composition of the cryptofauna communities was generally consistent with other studies. However, a high density of decapod symbionts could suggest that without other Pocillopora colonies to move to, they may crowd together despite their aggressive tendencies. 

Conclusions: Pocillopora colonies will experience an increase in symbionts that could positively contribute to the health and survival of the coral following transplantation.

https://doi.org/10.15517/rev.biol.trop..v71iS1.54882
PDF
HTML
EPUB

References

Abele, L. G., & Patton, W. K. (1976). The size of coral heads and the community biology of associated decapod crustaceans. Journal of Biogeography, 3, 35–47.

Alvarado, J. J., Beita-Jiménez, A., Mena, S., Fernández-García, C., & Guzmán-Mora, A. G. (2014). Ecosistemas coralinos del Área de Conservación Osa, Costa Rica: Estructura y necesidades de conservación. Revista de Biología Tropical, 63 (Suppl. 1), 219–259.

Alvarado, J. J., & Vargas-Castillo, R. (2012). Invertebrados asociados al coral constructor de arrecifes Pocillopora damicornis en Playa Blanca, Bahía Culebra, Costa Rica. Revista de Biología Tropical, 60 (Suppl. 2), 77–92.

Alzate, A., Zapata, F. A., & Giraldo, A. (2014). A comparison of visual and collection-based methods for assessing community structure of coral reef fishes in the Tropical Eastern Pacific. Revista de Biología Tropical, 62, 359–369.

Becker, A., Taylor, M. D. & Lowry, M. B. (2017). Monitoring of reef associated and pelagic fish communities on Australia’s first purpose built offshore artificial reef. ICES Journal of Marine Science, 74, 277–285.

Bell, J. & Galzin, R. (1984). Influence of live coral cover on coral-reef fish communities. Marine Ecology Progress Series, 15, 265–274.

Bellwood, D. R., Hughes, T. P., Folke, C. & Nyström, M. (2004). Confronting the coral reef crisis. Nature, 429, 827–833.

Boulay, J. N., Hellberg, M. E., Cortés, J., & Baums, I. B. (2014). Unrecognized coral species diversity masks differences in functional ecology. Proceedings of the Royal Society of London. Series B: Biological Sciences 281, 20131580. https://doi.org/10.1098/rspb.2013.1580

Breitburg, D. L. (1985). Development of a subtidal epibenthic community: Factors affecting species composition and the mechanisms of succession. Oecologia, 65, 173–184.

Burkepile, D. E., & Hay, M. E. (2010). Impact of herbivore identity on algal succession and coral growth on a Caribbean reef. PLoS ONE, 5, e8963

Caldwell, Z. R., Zgliczynski, B. J., Williams, G. J., & Sandin, S. A. (2016). Reef fish survey techniques: Assessing the potential for standardizing methodologies. PloS ONE, 11(4), e0153066. https://doi.org/10.1371/journal.pone.0153066

Castro, P. (1978). Movements between coral colonies in Trapezia ferruginea (Crustacea: Brachyura), an obligate symbiont of scleractinian corals. Marine Biology, 46, 237–245

Castro, P. (1988). Animal symbioses in coral-reef communities - a review. Symbiosis, 5, 161–184.

Castro, P. (1996). Eastern Pacific species of Trapezia (Crustacea, Brachyura: Trapeziidae), sibling species symbiotic with reef corals. Bulletin of Marine Sciences, 58, 531–554.

Clark, S., & Edwards, A. J. (1994). Use of artificial reef structures to rehabilitate reef flats degraded by coral mining in the Maldives. Bulletin of Marine Sciences, 55, 724–744.

Clarke, K. R., & Gorley, R. N. (2015). PRIMER v7: User manual. PRIMER-E Ltd. http://updates.primer-e.com/primer7/manuals/User_manual_v7a.pdf

Cortés, J. (1990). The coral reefs of Golfo Dulce, Costa Rica: Distribution and community structure. Atoll Research Bulletin, 344, 1–37.

Cortés, J., Enochs, I. C., Sibaja-Cordero, J., Hernández, L., Alvarado, J. J., Breedy, O., Cruz-Barraza, J. A., Esquivel-Garrote, O., Fernández-García, C., Hermosillo, A., Kaiser, K. L., Medina-Rosas, P., Morales-Ramírez, Á., Pacheco, C., Pérez-Matus, A., Reyes-Bonilla, H., Riosmena-Rodríguez, R., Sánchez-Noguera, C., Wieters, E., & Zapata, F. A. (2017). Marine biodiversity of Eastern Tropical Pacific coral reefs. In P. W. Glynn, D. Manzello, & I. C. Enochs (Eds.), Coral reefs of the Eastern Pacific: Persistence and loss in a dynamic environment. Coral reefs of the World 8 (pp. 203–250). Springer. https://doi.org/10.1007/978-94-017-7499-4_7

Cortés, J., & Jiménez, C. (2003). Corals and coral reefs of the Pacific of Costa Rica: History, research and status. In J. Cortés (Ed.), Latin American Coral Reefs (pp. 361–385). Elsevier Science B.V. https://doi.org/10.1016/b978-044451388-5/50017-5

Darling, E. S., Alvarez-Filip, L., Oliver, T. A., McClanahan, T. R., & Côté, I. M. (2012). Evaluating life-history strategies of reef corals from species traits. Ecology Letters, 15(12), 1378–1386. https://doi.org/10.1111/j.1461-0248.2012.01861.x.

Enochs, I. C. (2012). Motile cryptofauna associated with live and dead coral substrates: implications for coral mortality and framework erosion. Marine Biology, 159, 709–722.

Enochs, I. C., & Hockensmith, G. (2008). Effects of coral mortality on the community composition of cryptic metazoans associated with Pocillopora damicornis. Proceedings of the 11th International Coral Reef Symposium, 26, 1368–1372.

Enochs, I. C., & Manzello, D. P. (2012a). Responses of cryptofaunal species richness and trophic potential to coral reef habitat degradation. Diversity, 4, 94–104.

Enochs, I. C., & Manzello, D. P. (2012b). Species richness of motile cryptofauna across a gradient of reef framework erosion. Coral Reefs, 31, 653–661.

Enochs, I. C., Toth, L. T., Brandtneris, V. W., Afflerbach, J. C., & Manzello, D. P. (2011). Environmental determinants of motile cryptofauna on an eastern Pacific coral reef. Marine Ecological Progress Series, 438, 105–118 https://doi.org/10.3354/meps09259

Fabricius, K. E. (2005). Effects of terrestrial runoff on the ecology of corals and coral reefs: review and synthesis. Marine Pollution Bulletin, 50(2), 125–146. https://doi.org/10.1016/j.marpolbul.2004.11.028

Fonseca, A. C., & Cortés, J. (1998). Coral borers of the Eastern Pacific: Aspidosiphon (A.) elegans (Sipuncula: Aspidosiphonidae) and Pomatogebia rugosa (Crustacea: Upogebiidae). Pacific Science, 52, 170–175.

Froehlich, C. Y. M., Klanten, O. S., Hing, M. L., Dowton, M. & Wong, M. Y. L. (2021). Uneven declines between corals and cryptobenthic fish symbionts from multiple disturbances. Scientific Reports, 11, 16420. https://doi.org/10.1038/s41598-021-95778-x

Glynn, P. W. (1980). Increased survivorship in corals harboring crustacean symbionts. Marine Biology Letters, 4, 105–111.

Glynn, P. W. (1983). Crustacean symbionts and the defense of corals: Coevolution on the reef? In M. H. Nitecki (Ed.), Coevolution (pp. 111–178). University of Chicago Press,

Glynn, P. W. (2013). Fine-scale interspecific interactions on coral reefs: functional roles of small and cryptic metazoans. Smithsonian Contributions to the Marine Sciences, 39, 229–248

Glynn, P. W., Alvarado, J. J., Banks, S., Cortés, J., Feingold, J. S., Jiménez, C., Maragos, J. E., Martínez, P., Maté, J. L., Moanga, D. A., Navarrete, S., Reyes-Bonilla, H., Riegl, B., Rivera, F., Vargas-Ángel, B., Wieters, E. A. & Zapata, F. A. (2017). Eastern Pacific coral reef provinces, coral community structure, and composition: An overview. In P. W. Glynn, D. Manzello, & I. C. Enochs (Eds.), Coral reefs of the Eastern Pacific: Persistence and loss in a dynamic environment. Coral reefs of the World 8 (pp. 107–176). Springer. https://doi.org/10.1007/978-94-017-7499-4_5e

Glynn, P. W., & Enochs, I. C. (2011). Invertebrates and their roles in coral reef ecosystems. In Z. Dubinsky, & N. Stambler (Eds.), Coral reefs: An ecosystem in transition (pp. 273–326). Springer. https://doi.org/10.1007/978-94 -007-0114-4_18

Gotelli, N. J. & Abele, L. G. (1983). Community patterns of coral-associated decapods. Marine Ecology Progress Series, 13, 131–139.

Gotelli, N. J., Gilchrist, S. L. & Abele, L. G. (1985). Population biology of Trapezia spp. and other coral-associated decapods. Marine Ecology Progress Series, 21, 89–98.

Hebbeln, D., & Cortés, J. (2001). Sedimentation in a tropical fjord: Golfo Dulce, Costa Rica. Geo-Marine Letters, 20, 142–148.

Hernández, L., Balart, E. F., & Reyes-Bonilla, H. (2009). Checklist of reef decapod crustaceans (Crustacea: Decapoda) in the southern Gulf of California, México. Zootaxa, 2119, 39–50.

Hernández, L., Ortiz, G. R. & Reyes-Bonilla, H. (2013). Coral-associated decapods (Crustacea) from the Mexican Tropical Pacific coast. Zootaxa, 3609(5), 451–464.

Hixon, M. A. (1997). Effects of reef fishes on corals and algae. In C. Birkeland (Ed.), Life and death of coral reefs (pp. 230–248). Chapman & Hall.

Hixon, M. A., & Brostoff, W. N. (1996). Succession and herbivory: effects of differential fish grazing on Hawaiian coral-reef algae. Ecological Monograph, 66, 67–90.

Horoszowski-Fridman, Y. B, Brêthes, J., Rahmani, N., Rinkevich, B. (2015). Marine silviculture: Incorporating ecosystem engineering properties into reef restoration acts. Ecological Engineering, 82, 201–213.

Horoszowski-Fridman, Y. B., Rinkevich, B. (2017). Restoration of the animal forests: Harnessing silviculture biodiversity concepts for coral transplantation. In S. Rossi et al. (Eds.), Marine Animal Forests (pp. 1–23). Springer. https://doi.org/10.1007/978-3-319-21012-4_36

Huber, M. E. (1987). Aggressive behavior of Trapezia intermedia Miers and T. digitalis Latreille (Brachyura: Xanthidae). Journal of Crustacean Biology, 7, 238–248.

Hughes, T. P., Barnes, M. L., Bellwood, D. R., Cinner, J. E., Cumming, G. S., Jackson, J. B. C., Kleypas, J. A, van de Leemput, I. A., Lough, J. M, Morrison, T. H., Palumbi, S. R., van Nes, E. H., & Scheffer, M. (2017). Coral reefs in the Anthropocene. Nature, 546, 82–90.

Humphries, A. T., McClanahan, T. R., & McQuaid, C. D. (2014). Differential impacts of coral reef herbivores on algal succession in Kenya. Marine Ecology Progress Series, 504, 119–132.

Kleypas, J. A., Villalobos-Cubero, T., Marin-Moraga, J. A., Cortés, J., Alvarado, J. J. (2021). Reef restoration in the eastern tropical Pacific, a case study in Golfo Dulce, Costa Rica. In D. Vaughan (Ed.), Active Coral Reef Restoration: Techniques for a Changing Planet (pp. 417-430). J. Ross Publishing.

Kuffner, I., Walters, L., Becerro, M., Paul, V., Ritson-Williams, R., & Beach, K. (2006). Inhibition of coral recruitment by macroalgae and cyanobacteria. Marine Ecology Progress Series, 323, 107–117.

Ladd, M. C., Burkepile, D. E., & Shantz, A. A. (2019). Near-term impacts of coral restoration on target species, coral reef community structure, and ecological processes. Restoration Ecology, 27(5), 1166–1176.

McKeon, C. S., & Moore, J. M. (2014). Species and size diversity in protective services offered by coral guard-crabs. PeerJ, 2, e574. https://doi.org/10.7717/peerj.574.

Moeller, H. V., Nisbet, R. M., & Stier, A. C. (2023). Cascading benefits of mutualists' predators on foundation species: a model inspired by coral reef ecosystems. Ecosphere, 14(1), e4382. https://doi.org/10.1002/ecs2.4382

Pollock, F. J., Katz, S. M., Bourne, D. G., & Willis, B. L. (2013). Cymo melanodactylus crabs slow progression of white syndrome lesions on corals. Coral Reefs, 32, 43–48.

Pratchett, M. S. (2001). Influence of coral symbionts on feeding preferences of crown-of-thorns starfish Acanthaster planci in the western Pacific. Marine Ecology Progress Series, 214, 111–119.

Quesada-Alpízar, M. A., & Cortés, J. (2006). Los ecosistemas marinos del Pacífico sur de Costa Rica: estado del conocimiento y perspectivas del manejo. Revista de Biología Tropical, 54 (Suppl. 1), 101–145.

Reaka-Kudla, M. L. (1997). The global biodiversity of coral reefs: a comparison with rain forest. In M. L. Reaka-Kudla, D. E. Wilson, & E. O. Wilson (Eds.) Biodiversity II (pp. 83–108). Joseph Henry Press.

Rinkevich, B. (2005). Conservation of coral reefs through active restoration Measures: Recent approaches and last decade progress. Environmental Science & Technology, 39, 4333–4342.

Rodríguez-Troncoso, A., Rodríguez-Zaragoza, F., Mayfield, A., & Cupul-Magaña, A. (2018). Temporal variation in invertebrate recruitment on an Eastern Pacific coral reef. Journal of Sea Research, 145, 8–15.

Rouzé, H., Lecellier, G., Mills, S. C., Planes, S., Berteaux-Lecellier, V., & Stewart, H. (2014). Juvenile Trapezia spp. crabs can increase juvenile host coral survival by protection from predation. Marine Ecology Progress Series, 515, 151–159.

Russell, B. C. (1975). The development and dynamics of a small artificial reef community. Helgoländer Wissenschaftliche Meeresuntersuchungen, 27, 298–312.

Salas-Moya, C., Vargas-Castillo, R., Alvarado-Barrientos, J. J., Azofeifa-Solano, J. C., & Cortés, J. (2021). Decapod crustaceans associated with macroinvertebrates in Pacific Costa Rica. Marine Biodiversity Records, 14(1), 6. https://doi.org/10.1186/s41200-020-00199-w

Samsuri, A. N., Kikuzawa, Y. P., Taira, D., Sam, S. Q., Sim, W. T., Lionel Ng, C. S., Afiq-Rosli, L., Delon Wee, T. W., Ng, N. K., Toh, T. C., & Chou, L. M. (2018). The effectiveness of Trapezia cymodoce in defending its host coral Pocillopora acuta against corallivorous Drupella. Marine Biology, 165(4), 70. https://doi.org/10.1007/s00227-018-3330-2.

Santos, L. N., García-Berthou, E., Agostinho, A.A., & Latini, J. D. (2011). Fish colonization of artificial reefs in a large Neotropical reservoir: Material type and successional changes. Ecological Applications, 21, 251–262.

Society for Ecological Restoration International Science & Policy Working Group. (2004). The SER International Primer on Ecological Restoration. Society for Ecological Restoration International.

Sin, T. M. (1999). Distribution and host specialization in Tetralia crabs (Crustacea: Brachyura) symbiotic with corals in the Great Barrier Reef, Australia. Bulletin of Marine Science, 65, 839–850.

Stella, J. S., Jones, G. P., & Pratchett, M. S. (2010). Variation in the structure of epifaunal invertebrate assemblages among coral hosts. Coral Reefs, 29, 957–973.

Stella, J. S., Pratchett, M., Hutchings, P., & Jones, G. (2011). Coral-associated invertebrates: diversity, importance, and vulnerability to disturbance. Oceanography and Marine Biology, 49, 43–104.

Stewart, H. L., Holbrook, S. J., Schmitt, R. J., & Brooks, A. J. (2006). Symbiotic crabs maintain coral health by clearing sediments. Coral Reefs, 25, 609–615.

Stier, A. C., Gil, M. A., Mckeon, C. S., Lemer, S., Leray, M., Mills, S. C., & Osenberg. C. W. (2012). Housekeeping mutualisms: Do more symbionts facilitate host performance? PLoS ONE, 7(4), e32079. https://doi.org/10.1371/journal.pone.0032079

Stimson, J. (1990). Stimulation of fat-body production in the polyps of the coral Pocillopora damicornis by the presence of mutualistic crabs of the genus Trapezia. Marine Biology, 106, 211–218.

Toh, T. C., Ng, C. S. L., Peh, J. W. K., Toh, K. B., & Chou, L. M. (2014). Augmenting the post-transplantation growth and survivorship of juvenile scleractinian corals via nutritional enhancement. PLoS ONE, 9(6), e98529. https://doi.org/10.1371/journal.pone.0098529

Tsuchiya, M. (1999). Effect of mass coral bleaching on the community structure of small animals associated with the hermatypic coral Pocillopora damicornis. Journal of the Japanese Coral Reef Society, 1999, 65–72.

Villalobos, T. (2019). Integrated management and coral restoration in Golfo Dulce reefs, South Pacific, Costa Rica. [Unpublished master’s thesis]. University of Costa Rica.

Walker, L. R., Walker, J., & Hobbs, R. J. (2007). Forging a new alliance between succession and restoration, In L. R. Walker, J. Walker, & J. R. Hobbs (Eds.), Linking restoration and ecological succession (pp. 1–18). Springer.

Wolff, M., Hartmann, H. J., & Koch, V. (1996). A pilot trophic model for Golfo Dulce, a fjord-like embayment, Costa Rica. Revista de Biología Tropical, 44(Suppl. 3), 215–231.

Young, T. P., Chase, J. M., & Huddleston, R. T. (2001). Community Succession and Assembly. Ecological Restoration, 19(1), 5–18. https://doi.org/10.3368/er.19.1.5.

Comments

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Downloads

Download data is not yet available.