Revista de Biología Tropical ISSN Impreso: 0034-7744 ISSN electrónico: 2215-2075

OAI: https://revistas.ucr.ac.cr/index.php/rbt/oai
Demographic and population response of the threatened coral Acropora cervicornis (Scleractinia, Acroporidae) to fireworm corallivory
PDF
HTML
EPUB

Keywords

coral demographics; coral outplants; elasticity analysis; Hermodice carunculata; population matrix model; predation; restored population.
análisis de elasticidad; demografía de coral; depredación; Hermodice carunculata; modelo de matriz de población; población restaurada; trasplantes de coral.

How to Cite

Santiago-Padua, P., Velázquez-Alvarado, J., López-Pérez, A. D. M., Nevárez-Mélendez, J., Díaz-Druet, L. E., Suleimán-Ramos, S. E., & Mercado-Molina, A. E. (2023). Demographic and population response of the threatened coral Acropora cervicornis (Scleractinia, Acroporidae) to fireworm corallivory. Revista De Biología Tropical, 71(S1), 254912. https://doi.org/10.15517/rev.biol.trop.v71iS1.54912

Abstract

Introduction: The fireworm Hermodice carunculata is a widespread polychaete that can prey upon many coral species. However, few studies have examined the effect of fireworm predation on coral demographics during non-outbreak periods. 

Objective: To determine whether predation by H. carunculata compromised the growth, survival, and population performance of the threatened coral Acropora cervicornis. 

Methods: Nursery-reared coral fragments (n = 99) were fixed to the bottom of Punta Melones reef in the Island Municipality of Culebra, Puerto Rico. Predation activity and its demographic consequences on coral outplants were assessed from December 2020 to August 2022. Susceptibility to predation was compared between colonies collected directly from the reef and those originating from outside sources (e.g., coral nurseries). With the demographic data, simple size-based population matrix models were developed to 1) examine whether fireworm predation led to a significant decline in population growth rate (λ), 2) determine the demographic transition(s) that contribute the most to λ, and 3) determining the demographic transition(s) that accounted for differences in λ when comparing scenarios that considered either only predated colonies or both predated and non-predated outplants. 

Results: Predation increased over time, being more frequently observed in the area with the highest topographic relief and on colonies foreign to the study site. Outplants that were partially consumed grew significantly slower than non-predated colonies; however, predation did not threaten their survival. The likelihood of being attacked by the fireworm increased with branching complexity. The estimated λ for a scenario considering only those predated colonies was 0.99, whereas, for a scenario where both predated and non-predated colonies were considered, λ was 0.91. Population growth, under both scenarios, was mainly influenced by the probability of a large colony surviving and remaining at the largest size. 

Conclusions: Although predation can negatively impact coral growth, the relatively high survival rate of predated colonies compensates for the adverse effects. Since survival is the demographic transition that contributes most to population growth, it could be concluded that under a non-outbreak scenario, fireworm predation may not be the primary cause of A. cervicornis population decline.

https://doi.org/10.15517/rev.biol.trop..v71iS1.54912
PDF
HTML
EPUB

References

Agudo-Adriani, E. A., Cappelletto, J., Cavada-Blanco, F., & Croquer, A. (2016). Colony geometry and structural complexity of the endangered species Acropora cervicornis partly explain the structure of their associated fish assemblage. PeerJ, 4, e1861.

Anthony, K. R., Hoogenboom, M. O., Maynard, J. A., Grottoli, A. G., & Middlebrook, R. (2009). Energetics approach to predicting mortality risk from environmental stress: a case study of coral bleaching. Functional Ecology, 23(3), 539–550.

Bak, R. P. M. (1983). Neoplasia, regeneration, and growth in the reef-building coral Acropora palmata. Marine Biology, 77, 221−227

Bayraktarov, E., Banaszak, A. T., Montoya-Maya, P., Kleypas, J., Arias-González, J. E., Blanco, M., Calle-Triviño, J., Charuvi, N., Cortés-Useche, C., Galván, V., García-Salgado, M. A., Gnecco, M., Guendalin-García, S. D., Hernández-Delgado, E. A., Marín Moraga, J. A., Maya, M. F., Mendoza-Quiroz, S., Mercado-Cervantes, S., Morikawa, M., … Frías-Torres, S. (2020). Coral reef restoration efforts in Latin American countries and territories. PloS One, 15(8), e0228477.

Brilleman, S. L., Wolfe, R., Moreno-Betancur, M., & Crowther, M. J. (2021). Simulating survival data using the simsurv R Package. Journal of Statistical Software, 97, 1–27.

Calle-Triviño, J., Cortés-Useche, C., Sellares, R., & González, J. E. A. (2017). First record of the fireworm Hermodice carunculata preying on colonies of the threatened staghorn coral Acropora cervicornis in the southeastern outplanting sites of the Dominican Republic. Novitates Caribaea, 11, 97–98.

Caswell, H. (2001). Matrix population models: Construction, analysis, and interpretation (2nd Ed.). Sinauer Associates Inc.

Darling, E. S., Alvarez-Filip, L., Oliver, T. A., McClanahan, T. R., & Côté, I. M. (2012). Evaluating life-history strategies of reef corals from species traits. Ecology Letters, 15(12), 1378–1386.

Fingleton, B. (1984). Models of category counts. Cambridge University Press.

Gilmore, M. D., & Hall, B. R. (1976). Life history, growth habits, and constructional roles of Acropora cervicornis in the patch reef environment. Journal of Sedimentary Petrology, 46, 519–522.

Goergen, E. A., & Gilliam, D. S. (2018). Outplanting technique, host genotype, and site affect the initial success of outplanted Acropora cervicornis. PeerJ, 6, e4433.

Goergen, E. A., Moulding, A. L., Walker, B. K., & Gilliam, D. S. (2019). Identifying causes of temporal changes in Acropora cervicornis populations and the potential for recovery. Frontiers in Marine Science, 6, 36

Hernández-Delgado, E. A., Mercado-Molina, A. E., Alejandro-Camis, P. J., Candelas-Sánchez, F., Fonseca-Miranda, J. S., González-Ramos, C. M., Guzmán-Rodríguez, R., Olivo-Maldonado, I., Mége, P., & Suleimán-Ramos, S. E. (2014). Community-based coral reef rehabilitation in a changing climate: lessons learned from hurricanes, extreme rainfall, and changing land use impacts. Open Journal of Ecology, 4, 918–944

Knowlton, N., Lang, J. C., & Keller, B. D. (1990). Case study of natural population collapse: post-hurricane predation on Jamaican staghorn corals. Smithsonian Contribution to the Marine Sciences, 31,1–25

Kohler, K. E., & Gill, S. M. (2006) Coral point count with Excel extensions (CPCe): a visual basic program for the determination of coral and substrate coverage using random point count methodology. Computers & Geosciences, 32, 1259–1269

Mercado-Molina, A. E., Montañez-Acuña, A., Rodríguez-Barreras, R., Colón-Miranda, R., Díaz-Ortega, G., Martínez-González, N., Schleier-Henández, S., & Sabat, A. M. (2015). Revisiting the population status of the sea urchin Diadema antillarum in northern Puerto Rico. Journal of the Marine Biological Association of the United Kingdom, 95(5), 1017–1024.

Mercado-Molina, A. E., Ruiz-Diaz, C. P., Pérez, M. E., Rodríguez-Barreras, R., & Sabat, A. M. (2015). Demography of the threatened coral Acropora cervicornis: implications for its management and conservation. Coral Reefs, 34(4), 1113–1124.

Mercado-Molina, A. E., Ruiz-Diaz, C. P., & Sabat, A. M. (2015). Demographics and dynamics of two restored populations of the threatened reef-building coral Acropora cervicornis. Journal for Nature Conservation, 24, 17–23

Mercado-Molina, A. E., Ruiz-Diaz, C. P., & Sabat, A. M. (2016). Branching dynamics of transplanted colonies of the threatened coral Acropora cervicornis: Morphogenesis, complexity, and modeling. Journal of Experimental Marine Biology and Ecology, 482, 134–141.

Mercado-Molina, A. E., Ruiz-Diaz, C. P., & Sabat, A. M. (2018). Tissue loss rather than colony size determines the demographic fate of the branching coral Acropora cervicornis. Marine Ecology Progress Series, 597, 147–159.

Mercado-Molina, A. E., Sabat, A. M., & Hernández-Delgado, E. A. (2020). Population dynamics of diseased corals: effects of a shut down reaction outbreak in Puerto Rican Acropora cervicornis. Advances in Marine Biology, 87(1), 61–82.

Miller, M. W., Marmet, C., Cameron, C. M., & Williams, D. E. (2014). Prevalence, consequences, and mitigation of fireworm predation on endangered staghorn coral. Marine Ecology Progress Series, 516, 187–194.

Miller, M. W., & Williams, D. E. (2007). Coral disease outbreak at Navassa, a remote Caribbean Island. Coral Reefs, 26(1), 97–101.

Nemeth, M., & Appeldoorn, R. (2009). The distribution of herbivorous coral reef fishes within fore-reef habitats: the role of depth, light and rugosity. Caribbean Journal of Science, 45(2–3), 247–253.

Pérez-Pagán, B. S., & Mercado-Molina, A. E. (2018). Evaluation of the effectiveness of 3D-printed corals to attract coral reef fish at Tamarindo Reef, Culebra, Puerto Rico. Conservation Evidence, 15, 43–47.

R Core Team. (2017). R: A language and environment for statistical computing [Computer software]. R Foundation for Statistical Computing. https://www.R-project.org/

Righi, S., Prevedelli, D., & Simonini, R. (2020). Ecology, distribution and expansion of a Mediterranean native invader, the fireworm Hermodice carunculata (Annelida). Mediterranean Marine Science, 21(3), 558–574.

Ruiz-Diaz, C. P., Toledo-Hernandez, C., Mercado-Molina, A. E., Pérez, M. E., & Sabat, A. M. (2016). The role of coral colony health state in the recovery of lesions. PeerJ, 4, e1531.

Simonini, R., Righi, S., Zanetti, F., Fai, S., & Prevedelli, D. (2021). Development and catch efficiency of an attracting device to collect and monitor the invasive fireworm Hermodice carunculata in the Mediterranean Sea. Mediterranean Marine Science, 22(3), 706–714.

Stubben, C., & Milligan, B. (2007). Estimating and analyzing demographic models using the popbio package in R. Journal of Statistical Software, 22, 1–23.

Sussman, M., Loya, Y., Fine, M., & Rosenberg, E. (2003). The marine fireworm Hermodice carunculata is a winter reservoir and spring-summer vector for the coral-bleaching pathogen Vibrio shiloi. Environmental Microbiology, 5(4), 250–255.

Tunnicliffe, V. (1981). Breakage and propagation of the stony coral Acropora cervicornis. Proceedings of the National Academy of Sciences, 78(4), 2427–2431.

Vargas-Ángel, B., Thomas, J. D., & Hoke, S. M. (2003). High-latitude Acropora cervicornis thickets off fort lauderdale, Florida, USA. Coral Reefs, 22(4), 465–473.

Venables, W. N., & Ripley, B. D. (2013). Modern applied statistics with S-PLUS. Springer.

Vreeland, H. V., & Lasker, H. R. (1989). Selective feeding of the polychaete Hermodice carunculata Pallas on Caribbean gorgonians. Journal of Experimental Marine Biology and Ecology, 129(3), 265–277.

Weil, E., Hammerman, N. M., Becicka, R. L., & Cruz-Motta, J. J. (2020). Growth dynamics in Acropora cervicornis and A. prolifera in southwest Puerto Rico. PeerJ, 8, e8435.

Witman, J. D. (1988). Effects of predation by the fireworm Hermodice carunculata on milleporid hydrocorals. Bulletin of Marine Science, 42(3), 446–458.

Wolf, A. T., Nugues, M. M., & Wild, C. (2014). Distribution, food preference, and trophic position of the corallivorous fireworm Hermodice carunculata in a Caribbean coral reef. Coral Reefs, 33(4), 1153–1163.

##plugins.facebook.comentarios##

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Downloads

Download data is not yet available.